Prof. Marc Burger

Serie 5

FS 2021

1) Kreuze die richtigen Aussagen an. Seien $f,g\colon D\to\mathbb{R}$ monoton wachsende Funktionen, $D\subset\mathbb{R}$.

 \square $f \cdot g \colon D \to \mathbb{R}$ ist monoton wachsend.

- \square Angenommen $g(x) \neq 0$ für alle $x \in D$. Dann ist $\frac{f}{g}$ monton wachsend.
- \square Angenommen, $f(x), g(x) \neq 0$ für alle $x \in D$. Dann ist $\frac{f}{q}$ oder $\frac{g}{f}$ monoton wachsend.
- 2) Kreuze die richtigen Aussagen an. Sei $f: \mathbb{R} \to \mathbb{R}$ eine Funktion, die stetige bei $x_0 = 0$ ist mit $f(x_0) > 0$.
 - \square Es existieren $\varepsilon, \delta > 0$ so dass $f(x) > \varepsilon$ für alle $x \in (-\delta, \delta)$ gilt.
 - \square Es gilt $f(x) \ge 0$ für alle $x \in \mathbb{R}$.
 - \square Beide obige Aussagen sind falsch.
- 3) Sei $f: D \to \mathbb{R}$ mit $D \subseteq \mathbb{R}$. Welche der folgenden Aussagen ist äquivalent zur Stetigkeit von f?
 - \square Für alle $x \in D$ und $\varepsilon > 0$ existiert ein $\delta > 0$ so dass für alle $z \in D$ gilt:

$$z \in (x - \delta, x + \delta) \implies f(z) \in (f(x) - \varepsilon, f(x) + \varepsilon).$$

 \Box Für alle $x\in D$ existiert ein $\delta>0$ so dass für alle $\varepsilon>0$ und $z\in D$ gilt:

$$|z - x| < \delta \implies |f(z) - f(x)| < \varepsilon.$$

 \square Für alle $\varepsilon > 0$ existiert $\delta > 0$ so dass für alle $x, z \in D$ gilt:

$$|x - z| < \delta \implies |f(x) - f(z)| < \varepsilon.$$

- \square Alle obigen Definition sind falsch.
- 4) Kreuze die richtigen Aussagen an.
 - \square $f:[0,1] \to \mathbb{R}$ beschränkt \Longrightarrow f monoton.

- \square $f: [0,1] \to \mathbb{R}$ strikt monoton wachsend $\implies f$ stetig.
- $\square \ f \colon (0,1] \to \mathbb{R}$ monoton $\implies f$ beschränkt.
- $\square \ f \colon [0,1] \to \mathbb{R}$ monoton $\implies f$ beschränkt.
- 5) Sei $A \subset \mathbb{R}$ nach oben beschränkt und $a := \sup A$. Kreuze die richtigen Aussagen an.
 - \Box Die Menge $A \setminus \{a\}$ besitzt ein Maximum.
 - \square a ist das Infimum der Menge der oberen Schranken von A.
 - $\square \ \forall \varepsilon > 0$ existiert eine obere Schranke b von A mit $a \varepsilon < b < a$.
- 6) Die Reihe $\sum_{n=1}^{\infty} a_n$ konvergiert, falls:
 - $\Box \lim_{n\to\infty} a_n = 0.$
 - $\Box \lim_{n\to\infty} (|a_n| + |a_{n+1}| + |a_{n+2}|) = 0.$
 - $\square \sum_{n=127}^{\infty} |a_n|$ konvergiert.
- 7) Sei |z| < 1. Berechne das Cauchy Produkt von $1 + z + z^2 + z^3 + \cdots$ mit $1 z + z^2 z^3 + \cdots$.
- 8) Zeige, dass das Cauchy Produkt der beiden divergenten Reihen $2+2+2^2+2^3+2^4+\cdots$ und $-1+1+1+1+\cdots$ absolut konvergiert.
- 9) Sei $f: \mathbb{R} \to \mathbb{R}$ definiert durch

$$f(x) = \begin{cases} x, & x \in \mathbb{Q} \\ 1 - x, & x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Zeige, dass $x_0 = \frac{1}{2}$ der einzige Stetigkeitspunkt von f ist.

10) Sei

$$f \colon \mathbb{R} \to \mathbb{R}, \quad x \mapsto \frac{x^5 - 7x^2 + 1}{x^8 + 1}.$$

Zeige: f ist auf ganz $\mathbb R$ stetig und besitzt mindestens eine Nullstelle.