Analysis II

FS 2021

Prof. Dr. Ana Cannas Prof. Dr. Urs Lang

Serie 19

Am Ende des Übungsblattes finden sich die numerischen Lösungen der offenen Aufgaben, so dass Sie Ihre Lösungen rechtzeitig kontrollieren können.

MC-Aufgaben

1. Der Oberflächeninhalt des Graphs z = f(x, y) einer Funktion $f: D \to \mathbb{R}$ ist

(a)
$$\iint_D f_x^2(x,y) + f_y^2(x,y) dx dy$$

(b)
$$\iint_D \sqrt{1 + f_x^2(x, y) + f_y^2(x, y)} \, dx \, dy$$

(c)
$$\iint_D |f_x(x,y) \times f_y(x,y)| \, dx \, dy$$

2. Berechnen Sie den Fluss des Vektorfeldes

$$\vec{v} \colon (x, y, z) \mapsto (x, y^2 + z, 3x)$$

durch das Dreieck D mit Ecken (0,0,0), (1,0,0) und (0,1,0) in Richtung $\vec{n}=(0,0,1)$.

- (a) -3
- (b) $\frac{1}{2}$
- (c) 3
- (d) $-\frac{1}{2}$

3. Es sei B die Einheitskugel um den Ursprung. Für welche der Vektorfelder $(x, y, z) \mapsto \vec{v}(x, y, z)$ darf der Divergenzsatz für den Bereich B nicht angewendet werden?

(a)
$$\vec{v}(x, y, z) = (x, y, z)$$

(b)
$$\vec{v}(x,y,z) = C \cdot \frac{\vec{r}}{|\vec{r}|^3}$$
 (wobei $\vec{r} = (x,y,z)$ ist)

(c)
$$\vec{v}(x, y, z) = (xyz, x^2z^2, x^3ze^y)$$

- (d) $\vec{v}(x, y, z) = \vec{\omega} \times \vec{r}$ (wobei $\vec{\omega}$ ein beliebiger Vektor ist)
- (e) $\vec{v}(x, y, z) = \vec{a}$ (wobei \vec{a} ein beliebiger Vektor ist)
- (f) $\vec{v}(x, y, z) = (\ln x, \ln y, \ln z)$

- **4.** Welche der folgenden fünf Aussagen ist logisch unabhängig von den anderen vieren? (Das heisst, welche Aussage folgt nicht aus einer anderen und hat auch keine der anderen Aussagen als Konsequenz?)
- (a) Das Vektorfeld \vec{v} ist quellenfrei.
- (b) Der Fluss Φ von \vec{v} durch irgend eine geschlossene Fläche ist Null.
- (c) div $\vec{v} = 0$.
- (d) rot $\vec{v} = (0, 0, 0)$.
- (e) Das Vektorfeld \vec{v} könnte das Strömungsfeld einer inkompressiblen Flüssigkeit sein.

Offene Aufgaben

5. Gegeben ist das Vektorfeld

$$\vec{v}(x, y, z) = (1 - x, 1 - y, 1 + z)$$

sowie die Fläche S mit der Parameterdarstellung

$$(u,v) \mapsto \vec{r}(u,v) = (u-v,u+v,uv)$$

und dem Parameterbereich

$$B = \{(u, v) \mid 0 \le v \le 1, |u| \le 1 - v\}.$$

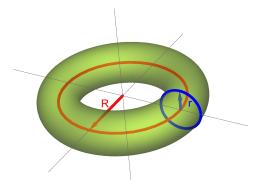
Berechnen Sie den Fluss des Feldes \vec{v} von oben nach unten durch die Fläche S.

6. Berechnen Sie den Fluss des Vektorfeldes $\vec{v}(x,y,z) = (x,y,z)$ durch das Paraboloid

$$P = \{(x, y, z) \in \mathbb{R}^3 : z = x^2 + y^2, \, x^2 + y^2 \le 1\}$$

von oben nach unten.

7. Berechnen Sie die Oberfläche eines Rotationstorus mit grossem Radius R und kleinem Radius r < R (siehe Abbildung).



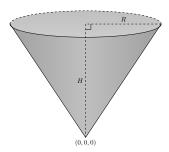
Hinweis: Parametrisieren Sie zuerst den Kreis C mit Radius R. Finden Sie dann für alle $p \in C$ eine Parametrisierung des Kreises mit Radius r und Mittelpunkt p. Dieser Kreis liegt in der Ebene, die durch \vec{p} und (1,0,0) aufgespannt wird.

8. Berechnen Sie den Fluss Φ des Vektorfeldes

$$\vec{v}:(x,y,z)\longmapsto\left(\frac{1}{3}x^3-xz,xy+yz,y^2z-xz\right)$$

von innen nach aussen durch die Oberfläche des geraden Kreiskegels mit Spitze in (0,0,2) und Grundfläche $\{(x,y,z)\,|z=0\,,\,x^2+y^2\leq 4\}.$

9. Gegeben sei eine Strömung mit Geschwindigkeitsvektor $\vec{v} = (2x^2, y, 1 - z)$. Welche Menge strömt (von aussen nach innen) pro Zeiteinheit durch die Mantelfläche des geraden Kreiskegels mit Radius R und Höhe H parallel zur z-Achse mit Spitze im Ursprung?



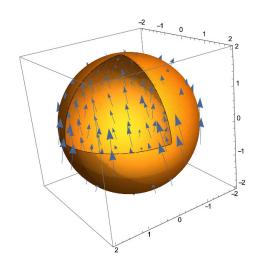
3

10. Sei R>0 fest gewählt. Berechnen Sie den Fluss des Vektorfeldes

$$\vec{v}:(x,y,z)\longmapsto (R(y^2+z^2),R^2(x^2+z^2),R^3(x^2+y^2))$$

von innen nach aussen durch die Oberfläche

$$E := \left\{ (x, y, z) \left| x^2 + y^2 + z^2 = R^2, x \le 0 \text{ oder } y \le 0 \text{ oder } z \le 0 \right\}.$$



- 11. Sei $B \subset \mathbb{R}^3$ ein endlicher Bereich mit Rand ∂B und seien f, g zweimal stetig differenzierbare Skalarfelder. Beweisen Sie die Greenschen Identitäten, die in der Potentialtheorie und in der Elektrodynamik gebraucht werden.
 - (a) Erste Greensche Identität

$$\iint_{\partial B} (f \cdot \operatorname{grad} g) \cdot \vec{n} \, dA = \iiint_{B} (f \cdot \Delta g + \operatorname{grad} f \cdot \operatorname{grad} g) \, dV$$

Hinweis: Wenden Sie den Divergenzsatz für das Vektorfeld $f \cdot \operatorname{grad} g$ an.

(b) Zweite Greensche Identität

$$\iint_{\partial B} \left(f \cdot \operatorname{grad} g - g \cdot \operatorname{grad} f \right) \cdot \vec{n} \, \mathrm{d}A = \iiint_{B} \left(f \cdot \Delta g - g \cdot \Delta f \right) \, \mathrm{d}V$$

Numerische Lösungen

5.
$$\Phi = -\frac{4}{3}$$
.

6.
$$\Phi = \frac{\pi}{2}$$
.

7.
$$A = 4\pi^2 Rr$$
.

8.
$$\Phi = \frac{16}{5}\pi$$
.

9.
$$\Phi = R^2\pi - R^2H\pi$$
.

10.
$$\Phi = -\frac{\pi}{8} \left(R^5 + R^6 + R^7 \right)$$
.