Lösung 3

- 1. a) Siehe das m-file summtrapezregel.
 - b) Siehe das m-file summsimpsonregel.
 - c) Siehe das m-file summ2punktgauss.
 - d) Siehe das m-file summbestimmeordnung
 - e) Gegeben sei eine summierte Quadraturregel (SQR) Q^N basierend auf einer Quadraturregel (QR) der Ordnung s (d.h. einen Genauigkeitsgrad q=s-1). In der Vorlesung haben wir gesehen, dass falls der Integrand f glatt genug ist, konvergiert die SQR mit Ordnung s, d.h.

$$E^{N}(f) := |I[f] - Q^{N}[f]| \le \frac{||f^{(s)}||_{\infty}}{s!} (b - a)h^{s}.$$

In unserem Fall besitzt die Trapezregel die Ordnung 2.

Wir sehen, dass f_1 und f_3 glatt genug sind, d.h. $f_1, f_3 \in C^2(a,b)$ und wir beobachten für beide Funktionen die erwartete quadratische Konvergenz. Die Funktion f_2 ist nicht $C^2(a,b)$ aber wir sehen trotzdem eine beschränkte Konvergenzordnung (≈ 1.5).

Die beobachtete Konvergenzordnung für die in f_4 .m definierte Funktion ist 10.87. Diese verbesserte Konvergenz ist eine Konsequenz der Perriodizität von der Funktion f_4 . Tatsächlich kann man für periodische glatten Funktionen exponentielle Konvergenz zeigen.

In der folgenden Tabelle, zeigen wir die beobachtete Konvergenzordnungen für die verschiedenen Funktionen und Verfahren. In der zweiten Zeile steht die erwartete Konvergordnung.

	Summ. Trapezregel	Summ. Simpsonregel	Summ. 2 P. Gauss
	2	4	4
f_1	2.00	4.00	4.00
f_2	1.46	1.50	1.50
f_3	2.00	3.43	3.43
f_4	10.87	Inf	10.25

f) Auf jedem Intervall wertet die Trapezregel die Funktion zweimal aus. Wir können es jedoch besser machen. Da die Quadraturegel nur die Endpunkte benutzt, können wir die inneren Gitterpunkte nur einmal auswerten. Wir erhalten dann (N-1)+2=N+1 Funktionsauswertungen für die summierte Trapezregel.

Für die summierte 2 Punkte Gauss Quadraturformel gibt es auch 2 Punkte in jedem Intervall aber in dieser Situation können wir nichts verbessern und wir erhalten 2N.

Die summierte Simpsonregel benutzt 3 punkte in jedem Intervall aber die Situation ist ähnlich wie bei der Trapezregel. Nur die Mittelpunkte (in jedem Intervall) können nicht zweimal benutzt werden. In diesem Fall erhalten wir dann (N+1)+N=2N+1 Funktionsauswertungen.

2. 3-Punkte Gauss Quadraturregel

a) Um das Polynom $P_3(x)$ zu berechnen, benutzen wir die Formel

$$P_{j+1}(x) = \frac{2j+1}{j+1}xP_j(x) - \frac{j}{j+1}P_{j-1}(x), \qquad j \ge 1.$$

Mit $P_0(x)=1$, $P_1(x)=x$ und $P_2(x)=\frac{1}{2}(3x^2-1)$, erhalten wir für j=2

$$P_3(x) = \frac{5}{3}xP_2(x) - \frac{2}{3}P_1(x) = \frac{5}{6}(3x^3 - x) - \frac{2}{3}x = \frac{1}{2}(5x^3 - 3x) = \frac{x}{2}(5x^2 - 3).$$

Die Nullstellen von $P_3(x)$ sind dann

$$x_0 = -\sqrt{\frac{3}{5}}, \qquad x_1 = 0, \qquad x_2 = \sqrt{\frac{3}{5}}.$$

Die Gewichte berechnen wir durch

$$\omega_k = \frac{2(1-x_k^2)}{((j+1)P_i(x_k))^2}, \qquad k = 0, 1, 2,$$

und erhalten

$$\omega_0 = \frac{2(1 - x_0^2)}{(3P_2(x_0))^2} = \frac{4}{45P_2(x_0)^2} = \frac{4}{45} \frac{25}{4} = \frac{5}{9},$$

$$\omega_1 = \frac{2(1 - x_1^2)}{(3P_2(x_1))^2} = \frac{2}{9P_2(x_1)^2} = \frac{8}{9},$$

$$\omega_2 = \frac{2(1 - x_2^2)}{(3P_2(x_2))^2} = \frac{4}{45P_2(x_2)^2} = \frac{4}{45} \frac{25}{4} = \frac{5}{9}.$$

b) Um zu bestätigen, dass die 3-Punkte Gauss Quadraturregel die Ordnung 6 besitzt müssen wir folgendes überprüfen:

$$I\left[x^{l}\right] = G_{2}\left[x^{l}\right]$$
 für $l = 0, \dots, 5$ und $I[x^{6}] \neq G_{2}[x^{6}]$.

Wir berechnen $I\left[x^{l}\right]=\int_{-1}^{1}x^{l}dx=\frac{1-(-1)^{l+1}}{l+1}$ und erhalten

$$G_{2}[1] = \sum_{j=0}^{2} \omega_{j} = \frac{5}{9} + \frac{8}{9} + \frac{5}{9} = 2, \qquad I[1] = 2 \Rightarrow \checkmark,$$

$$G_{2}[x] = \sum_{j=0}^{2} \omega_{j} x_{j} = -\frac{5}{9} \left(\frac{3}{5}\right)^{1/2} + \frac{8}{9} \cdot 0 + \frac{5}{9} \left(\frac{3}{5}\right)^{1/2} = 0, \quad I[x] = 0 \Rightarrow \checkmark,$$

$$G_{2}[x^{2}] = \sum_{j=0}^{2} \omega_{j} x_{j}^{2} = \frac{5}{9} \cdot \frac{3}{5} + \frac{8}{9} \cdot 0 + \frac{5}{9} \cdot \frac{3}{5} = \frac{2}{3}, \qquad I[x^{2}] = \frac{2}{3} \Rightarrow \checkmark,$$

$$G_{2}[x^{3}] = \sum_{j=0}^{2} \omega_{j} x_{j}^{3} = -\frac{5}{9} \left(\frac{3}{5}\right)^{3/2} + \frac{8}{9} \cdot 0 + \frac{5}{9} \left(\frac{3}{5}\right)^{3/2} = 0, \quad I[x^{3}] = 0 \Rightarrow \checkmark,$$

$$G_{2}[x^{4}] = \sum_{j=0}^{2} \omega_{j} x_{j}^{4} = \frac{5}{9} \left(\frac{3}{5}\right)^{2} + \frac{8}{9} \cdot 0 + \frac{5}{9} \left(\frac{3}{5}\right)^{2} = \frac{2}{5}, \qquad I[x^{4}] = \frac{2}{5} \Rightarrow \checkmark,$$

$$G_{2}[x^{5}] = \sum_{j=0}^{2} \omega_{j} x_{j}^{5} = -\frac{5}{9} \left(\frac{3}{5}\right)^{5/2} + \frac{8}{9} \cdot 0 + \frac{5}{9} \left(\frac{3}{5}\right)^{5/2} = 0, \quad I[x^{5}] = 0 \Rightarrow \checkmark,$$

$$G_{2}[x^{6}] = \sum_{j=0}^{2} \omega_{j} x_{j}^{5} = \frac{5}{9} \left(\frac{3}{5}\right)^{3} + \frac{8}{9} \cdot 0 + \frac{5}{9} \left(\frac{3}{5}\right)^{3} = \frac{6}{25}, \qquad I[x^{6}] = \frac{2}{7} \Rightarrow \checkmark.$$

c) Auf dem Intervall [a, b] sind die Punkte und Gewichte gegeben durch

$$\widetilde{x}_{j} = \frac{b-a}{2}x_{j} + \frac{a+b}{2}, \qquad \qquad \widetilde{\omega}_{j} = \frac{b-a}{2}\omega_{j},$$

$$\widetilde{x}_{0} = -\sqrt{\frac{3}{5}}\frac{b-a}{2} + \frac{a+b}{2}, \qquad \qquad \widetilde{\omega}_{0} = \frac{5(b-a)}{18},$$

$$\widetilde{x}_{1} = \frac{a+b}{2}, \qquad \qquad \widetilde{\omega}_{1} = \frac{4(b-a)}{9},$$

$$\widetilde{x}_{2} = \sqrt{\frac{3}{5}}\frac{b-a}{2} + \frac{a+b}{2}, \qquad \qquad \widetilde{\omega}_{2} = \frac{5(b-a)}{18}.$$

Für den Code, siehe summ3punktgauss.m.

d) Siehe summbestimmeordnung.m. Für f_1 konvergiert die summierte Quadraturregel mit Ordnung 6, wobei für f_2 nur mit beschränkte Ordnung 3.33. Das folgt aus mangelnder Glattheit der Funktion.

3. Konvergenz

Siehe Konvergenz.m und Konvergenz_newcot.m.

a) Für f_1 beobachtet man exponentielle Konvergenz mit q = 0.00171. Das ist das erwartete Verhalten da die Funktion glatt ist.

Die Funktionen f_2 und f_3 sind nicht glatt genug um exponentielle Konvergenz zu erhalten. Deshalb sieht man nur algebraische Konvergenz mit $\alpha \approx 2.5$.

b) In I_3 , the integrand f_3 has a singularity at x = +1,

$$\frac{df_3}{dx}(x) = \frac{1}{\sqrt{1-x^2}} \xrightarrow{x \to +1} \infty.$$

As f_3 is not smooth, the integral I_3 converges algebraically, as observed in **a**).

Mathematically, I_3 and I_4 are equivalent. However, we observe that the reformulated integral I_4 converges exponentially with q=0.005943. The integrand function $y\cos(y)$ in I_4 is smooth, therefore, the exponential convergence of Gauss-Legendre quadrature is restored.

Remark: An appropriate formulation of the integrand can improve the performance of your quadrature approximation. However, it is not always possible to find a tranformation which removes singularities from the integrand.

c) In Abb. 1(a) wurde b) wiedeholt jedoch mittels Newton-Cotes Quadraturregeln. Wir beobachten, dass bei geringer Anzahl von Quadratur-Knoten der Quadraturfehler zunächst (wie zu erwarten ist) abnimmt. Jedoch gibt es einen Punkt, wo bei wachsender Anzahl von Quadratur-Knoten der Quadraturfehler massiv ansteigen kann.

Wie in der Vorlesung erwähnt sind Newton-Cotes Quadraturregeln mit n+1-Knoten praktisch unbrauchbar für $n\gtrsim 6$ da negative Gewichte auftreten. Dies hat auch damit zu tun, dass diese Quadraturregeln auf Interpolation mit äquidistanten Stützstellen/Knoten basieren. Da diese Wahl der Stützstellen/Knoten nicht unbedingt eine gute Approximation liefert (s. Aufgabe 3 aus Serie 1!) ist intuitiv klar, dass es für grosse n zu Problemen kommen kann.

Da alle Rechnungen auf dem Computer fehlerbehaftet sind (endliche Genauigkeit der Fliesskommazahlen führen auf sog. Rundungsfehler!) wollen wir uns überlegen was dies für die Quadratur bedeutet. Sei also $\tilde{f}(x)$ die fehlerbehaftete Auswertung der Funktion f(x)

$$\tilde{f}(x) = f(x) + \varepsilon(x)$$

wobei $\varepsilon(x)$ diesen Fehler bezeichne. Beachte, dass er i.A. von x abhängen kann. Der Quadraturfehler hat nun folgende Form

$$\tilde{E}_n[f] = I[f] - Q_n[\tilde{f}]$$

wobei zu beachten ist, dass in die Quadraturregel die fehlerbehaftete Funktion $\tilde{f}(x)$ eingeht. Dies untersuchen wir nun wie folgt etwas genauer

$$\tilde{E}_n[f] = I[f] - Q_n[\tilde{f}]$$

$$= I[f] - Q_n[f + \varepsilon]$$

$$= \underbrace{I[f] - Q_n[f]}_{E_n[f]} + \underbrace{Q_n[\varepsilon]}_{R_n[f]}.$$

Hier ist nun der Term $E_n[f]$ der "übliche" Quadraturfehler wenn f exakt ausgewertet wird und Term $R_n[f]$ der neue Anteil wegen den Rundungsfehlern, d.h. die fehlerbehaftete Auswertung von f.

Den neuen Term können wir nun wie folgt abschätzen

$$|R_n[f]| = |Q_n[\varepsilon]|$$

$$= \left| \sum_{j=0}^n \omega_j \varepsilon_j \right|$$

$$\leq \varepsilon \left| \sum_{j=0}^n \omega_j \right|$$

$$\leq \varepsilon \sum_{j=0}^n |\omega_j|$$

wobei wir in der zweiten Zeile berücksichtigt haben, dass der Fehler $\varepsilon_j=\varepsilon(x_j)$ für jeden Quadratur-Knoten verschieden sein kann. In der dritten Zeile nehmen wir an, dass diese ε_j begrentzt sind durch ein gewisses ε mit $|\varepsilon_j|\leq \varepsilon$ für j=0,...,n. Zum Schluss haben wir in der letzten Zeile die Dreiecksungleichung verwendet.

Weiter wissen wir, dass Newton-Cotes Quadraturregeln einen Genauigkeitsgrad von (mindestens) n haben und damit auch die Konstante Funktion f(x)=1 exakt integrieren, also:

$$\int_{a}^{b} 1 dx = Q_{n}[1] = \sum_{j=0}^{n} \omega_{j} = b - a.$$

Sind die Quadratur-Gewichte nun alle positiv, so ist

$$\sum_{j=0}^{n} |\omega_j| = \sum_{j=0}^{n} \omega_j = b - a$$

und damit erhalten wir für $|R_n[f]|$ folgenden Ausdruck

$$|R_n[f]| \le \varepsilon(b-a).$$

Dies bedeutet: Sind alle Quadratur-Gewichte positiv, so ist der Fehler wegen der fehlerbehafteten Auswertung der Funktion f beschränkt durch ε .

Anderseits, sind die Quadratur-Gewichte nicht alle positiv, so gilt

$$\sum_{j=0}^{n} |\omega_j| > \left| \sum_{j=0}^{n} \omega_j \right| = b - a$$

und damit kann der maximale gemachte Fehler ε bei der Auswertung von f durch den Faktor $\sum_{j=0}^{n} |\omega_j|$ verstärkt werden! Dies ist illustriert in Abb. 1(b) wo dieser Faktor für Newton-Cotes Quadraturregeln bis n=50 gezeigt wird.

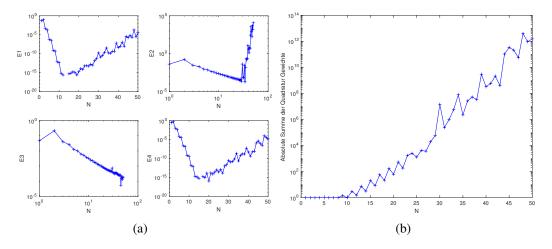


Abbildung 1 – Fehler (links) und absolute Summe der Quadratur-Gewichte (rechts) für Newton-Cotes Quadraturregeln.

4. Gauss Quadratur mit Gewichtsfunktionen

a)

$$p_0(x) = 1 \tag{1}$$

$$p_1(x) = x - 1/3 \tag{2}$$

$$p_2(x) = x^2 - 6/7x + 3/35 (3)$$

b) Die Nullstellen von $p_2(x)$ sind

$$x_{0,1} = \frac{15 \mp 2\sqrt{30}}{35}$$

Dann die Lagrange-Polynome bilden für die Knoten x_0, x_1 :

$$L_0^1(x) = \prod_{i=0, i\neq 0}^1 \frac{x - x_i}{x_0 - x_i} = \frac{x - x_1}{x_0 - x_1} = -\frac{35x - 2\sqrt{30} - 15}{4\sqrt{30}}$$
(4)

$$L_1^1(x) = \prod_{i=0, i\neq 1}^1 \frac{x - x_i}{x_1 - x_i} = \frac{x - x_0}{x_1 - x_0} = +\frac{35x + 2\sqrt{30} - 15}{4\sqrt{30}}$$
 (5)

und die Gewichte berechnen, wobei $w(x) = \frac{1}{\sqrt{x}}$

$$w_j = \int_0^1 w(x) L_j^1(x) dx, \qquad j = 0, 1$$

$$w_{0} = \int_{0}^{1} \frac{1}{\sqrt{x}} L_{0}^{1}(x) dx = \int_{0}^{1} \frac{1}{\sqrt{x}} \frac{x - x_{1}}{x_{0} - x_{1}} dx$$

$$= \frac{1}{x_{0} - x_{1}} \int_{0}^{1} \frac{1}{\sqrt{x}} (x - x_{1}) dx = \frac{1}{x_{0} - x_{1}} \left(\int_{0}^{1} \frac{1}{\sqrt{x}} x dx - x_{1} \int_{0}^{1} \frac{1}{\sqrt{x}} dx \right)$$

$$= \frac{1}{x_{0} - x_{1}} \left(\frac{2}{3} x^{3/2} \Big|_{0}^{1} - x_{1} 2x^{1/2} \Big|_{0}^{1} \right) = \frac{3\sqrt{30} + 5}{3\sqrt{30}} \approx 1.30429$$
(8)

$$w_{1} = \int_{0}^{1} \frac{1}{\sqrt{x}} L_{1}^{1}(x) dx = \int_{0}^{1} \frac{1}{\sqrt{x}} \frac{x - x_{0}}{x_{1} - x_{0}} dx$$

$$= \frac{1}{x_{1} - x_{0}} \int_{0}^{1} \frac{1}{\sqrt{x}} (x - x_{0}) dx = \frac{1}{x_{1} - x_{0}} \left(\int_{0}^{1} \frac{1}{\sqrt{x}} x dx - x_{0} \int_{0}^{1} \frac{1}{\sqrt{x}} dx \right)$$

$$= \frac{1}{x_{1} - x_{0}} \left(\frac{2}{3} x^{3/2} \Big|_{0}^{1} - x_{0} 2x^{1/2} \Big|_{0}^{1} \right) = \frac{3\sqrt{30} - 5}{3\sqrt{30}} \approx 0.69571$$
(11)

und die Quadratur die bilden,

$$Q[f] = w_0 f(x_0) + w_1 f(x_1) \approx \int_0^1 \frac{f(x)}{\sqrt{x}} dx.$$

c) Für Funktionen der Form $\frac{f(x)}{\sqrt{x}}$ divergiert die Trapezregel beim Knoten x=0, $\frac{f(0)}{\sqrt{0}}$.