ÜBUNG E.1. Seien $\alpha, \beta, \gamma \in \mathsf{Ord}$ mit $\alpha < \beta$. Man beweise:

1.
$$\alpha + \gamma \leq \beta + \gamma$$
.

2.
$$\alpha \bullet \gamma \leq \beta \bullet \gamma$$
.

3.
$$\alpha^{\gamma} \leq \beta^{\gamma}$$
.

ÜBUNG E.2. Man finde für jeden der folgenden Fälle Ordinalzahlen (nicht notwendigerweise jedes Mal die gleiche Ordinalzahlen), so dass sich ergibt:

1.
$$\alpha + \beta \neq \beta + \alpha$$
.

2.
$$\alpha \bullet \beta \neq \beta \bullet \alpha$$
.

3.
$$(\alpha + \beta) \bullet \gamma \neq \alpha \bullet \gamma + \beta \bullet \gamma$$
.

4.
$$(\alpha \bullet \beta)^{\gamma} \neq \alpha^{\gamma} \bullet \beta^{\gamma}$$
.

5.
$$\alpha < \beta$$
 und $\alpha + \gamma = \beta + \gamma$.

6.
$$\alpha < \beta, \gamma > 0$$
, und $\alpha \bullet \gamma = \beta \bullet \gamma$,

7.
$$\alpha < \beta$$
 und $\gamma > 0$, und $\alpha^{\gamma} = \beta^{\gamma}$.

Man beweise, dass jedoch alle sieben Aussagen falsch sind, wenn α, β und γ alles $<\omega$ sein müssen.

ÜBUNG E.3. Man beweise die folgenden **Distributivgesetze**:

1.
$$\alpha \bullet (\beta + \gamma) = \alpha \bullet \beta + \alpha \bullet \gamma$$
.

2.
$$\alpha^{\beta+\gamma} = \alpha^{\beta} \bullet \alpha^{\gamma}$$
.

3.
$$(\alpha^{\beta})^{\gamma} = \alpha^{\beta \bullet \gamma}$$
.

ÜBUNG E.4. Seien $(a, <_a)$ und $(b, <_b)$ zwei total geordnete Mengen. Wir definieren eine Relation \prec auf $c := a \times b$ durch:

$$(x,y) \prec (z,w)$$
 g.d.w. $x <_a z,$ oder $x = z$ und $y <_b w.$

- 1. Man beweise, dass \prec eine totale Ordnung ist.
- 2. Nun angenommen, dass sowohl $(a, <_a)$ als auch $(b, <_b)$ wohlgeordnet sind. Man beweise, dass (c, \prec) auch wohlgeordnet ist.
- 3. Angenommen weiter, dass $(a, <_a)$ bzw. $(b, <_b)$ die Ordnungstypen α bzw. β haben. Man beweise, dass (c, \prec) die Ordnungstyp $\alpha \bullet \beta$ hat.

ÜBUNG E.5. Seien $(a, <_a)$ und $(b, <_b)$ zwei total geordnete Mengen mit $a \cap b = \emptyset$. Wir definieren eine Relation \prec auf $c := a \cup b$ durch:

$$x, y \in a \text{ und } x <_a y,$$

 $x \prec y$ g.d.w. oder $x, y \in b \text{ und } x <_b y,$
 oder $x \in a \text{ und } y \in b.$

- 1. Man beweise, dass \prec eine totale Ordnung ist.
- 2. Nun angenommen, dass sowohl $(a, <_a)$ als auch $(b, <_b)$ wohlgeordnet sind. Man beweise, dass (c, \prec) auch wohlgeordnet ist.
- 3. Angenommen weiter, dass $(a, <_a)$ bzw. $(b, <_b)$ die Ordnungstypen α bzw. β haben. Man beweise, dass (c, \prec) die Ordnungstyp $\alpha + \beta$ hat.

ÜBUNG E.6. Seien $\alpha \leq \beta$ zwei Ordinalzahlen. Man beweise, dass eine eindeutige Ordinalzahl γ existiert, so dass $\alpha+\gamma=\beta$. Man verwendet dies, um die **Subtraktion** von Ordinalzahlen zu definieren. *Hinweis:* Benutze Übung E.5.

ÜBUNG E.7. Sei α eine Ordinalzahl. Man beweise, dass eine eindeutige Limeszahl λ und eine eindeutige natürliche Zahl n existiert, so dass $\alpha = \lambda + n$ gilt.

ÜBUNG E.8. Sei α eine Ordinalzahl. Man beweise, dass α genau dann eine Limeszahl ist, wenn es eine solche Ordinalzahl β existiert, dass $\alpha = \omega \bullet \beta$ gilt.

ÜBUNG E.9. Sei (a, <) eine wohlgeordnete Menge und $H: \Omega \to \Omega$ eine Funktion. Man beweise, dass es genau eine Funktion f mit D(f) = a existiert, so dass für alle $x \in a$:

$$f(x) = H[f_{\uparrow a_x}],$$

wobei wie üblich a_x das Anfangsstück $\{y \in a \mid y < x\}$ bezeichnet. *Hinweis*: Ändere den Beweis des Rekursionssatzes.