Übungsserie 3

Abgabe bis zum 24. März

Bonuspunkte können in Aufgabe 1-4 erarbeitet werden

Aufgabe 1. Die *Operatornorm* einer Matrix $A \in \operatorname{Mat}_{m,n}(\mathbb{R})$ ist durch

$$||A||_{on} = \sup \left\{ |Ax| \mid x \in \mathbb{R}^n \text{ mit } |x| \le 1 \right\}$$

definiert, wobei $|\cdot|$ für die Euklidische Norm auf \mathbb{R}^n beziehungsweise \mathbb{R}^m steht.

- (a) Zeigen Sie, dass $\|\cdot\|_{\text{op}}$ eine Norm auf dem Vektorraum der Matrizen $\text{Mat}_{m,n}(\mathbb{R})$ definiert.
- (b) Zeigen Sie, dass

$$|Ax| \le ||A||_{\text{op}} |x|$$
 und $||AB||_{\text{op}} \le ||A||_{\text{op}} ||B||_{\text{op}}$.

für alle $x \in \mathbb{R}^n$ und alle $A \in \operatorname{Mat}_{m,n}(\mathbb{R}), B \in \operatorname{Mat}_{n,k}(\mathbb{R})$ gilt.

(c) Sei $I_n \in \operatorname{Mat}_{n,n}(\mathbb{R})$ die Identitätsmatrix. Zeigen Sie, dass für jede Matrix $A \in \operatorname{Mat}_{n,n}(\mathbb{R})$ mit $\|A\|_{op} < 1$ die Matrix $(I_n - A)$ invertierbar ist.

Hinweis: Banachscher Fixpunktsatz.

Aufgabe 2. Seien X und Y topologische Räume und seien A_1 und $A_2 \subset X$ abgeschlossene Teilmengen von X mit $X = A_1 \cup A_2$. Seien $f_1 : A_1 \longrightarrow Y$ und $f_2 : A_2 \longrightarrow Y$ stetige Funktionen mit $f_1(x) = f_2(x)$ für alle $x \in A_1 \cap A_2$. Zeigen Sie, dass die Funktion $f : X \longrightarrow Y$ gegeben durch

$$f(x) = \begin{cases} f_1(x) & \text{falls } x \in A_1 \\ f_2(x) & \text{falls } x \in A_2 \end{cases}$$

wohldefiniert und stetig ist.

Aufgabe 3. Seien X, Y metrische Räume.

- (a) Sei I eine beliebige Indexmenge. Sei $(A_i)_{i\in I}$ eine Familie von zusammenhängenden Teilmengen von X mit $\bigcap_{i\in I} A_i \neq \emptyset$. Dann ist $A = \bigcup_{i\in I} A_i$ zusammenhängend.
- (b) Sei I eine beliebige Indexmenge. Sei $(A_i)_{i\in I}$ eine Familie von wegzusammenhängenden Teilmengen von X mit $\bigcap_{i\in I} A_i \neq \emptyset$. Dann ist $A = \bigcup_{i\in I} A_i$ wegzusammenhängend.
- (c) Sei A wegzusammenhängend und $f: X \longrightarrow Y$ stetig. Zeigen Sie, dass das Bild f(A) wegzusammenhängend ist.

Aufgabe 4. Sei (X, d) ein metrischer Raum und $A \subset X$ eine Teilmenge.

- (a) Angenommen X ist vollständig und A ist abgeschlossen. Zeigen Sie, dass der Teilraum A auch vollständig ist.
- (b) Angenommen A ist vollständig. Zeigen Sie, dass $A \subset X$ abgeschlossen ist.

Aufgabe 5. (a) Sei X ein topologischer Raum und $Y \subset X$ zusammenhängend. Dann ist auch der Abschluss $\overline{Y} \subset X$ zusammenhängend.

(b) Skizzieren Sie den Teilraum $X \subset \mathbb{R}^2$ gegeben durch

$$X = \{0\} \times [-1, 1] \cup \{(t, \sin(\frac{1}{t})) \,|\, t > 0\}$$

und zeigen Sie, dass X zusammenhängend, aber nicht wegzusammenhängend ist.

Aufgabe 6. Sei $a \in \mathbb{R}$ eine reelle Zahl und sei $f : \mathbb{R} \longrightarrow \mathbb{R}$ die Funktion definiert durch

$$f(x) = \begin{cases} |x|^a \sin(\frac{1}{x}) & \text{falls } x \neq 0\\ 0 & \text{falls } x = 0 \end{cases}$$

Bestimmen Sie für welche Wahl von $a \in \mathbb{R}$ die Funktion f stetig, ableitbar, oder sogar stetig ableitbar ist. Stellen Sie eine Vermutung auf: Für welche $a \in \mathbb{R}$ ist f von Klasse C^n , für $n = 1, 2, 3, 4, \ldots$?

Aufgabe 7. Beweisen Sie, dass keine der metrischen Räume \mathbb{R}^2 , $S^1 = \{x \in \mathbb{R}^2 \mid |x| = 1\}$, \mathbb{R} , [0,1], [0,1) homöomorph zueinander sind.

Hinweis: Welche dieser Räume bleiben zusammenhängend, wenn man 0,1 oder 2 Punkte entfernt?