Lösung 5

Radikale Körpererweiterungen

- 1. Sei $f=X^3+X^2+2X+\frac{7}{27}\in\mathbb{Q}[X]$. Konstruieren Sie eine radikale Körpererweiterung von \mathbb{Q} , die einen Zerfällungskörper von f enthält.
- 2. Sei K ein Körper, $f \in K[X]$ ein Polynom von Grad p prim und E ein Zerfällungskörper von f. Zeigen Sie, dass falls Gal(E|K) zyklisch von Ordnung p ist, dann ist f irreduzibel.
- 3. Bestimmen Sie für jedes der folgenden Polynome die Galoisgruppe eines Zerfällungskörpers.
 - (a) $X^5 + \frac{5}{4}X^4 \frac{5}{21} \in \mathbb{Q}[X]$
 - (b) $X^4 + X + 1 \in \mathbb{F}_2[X]$
 - (c) $X^{81} t \in \mathbb{F}_3(t)[X]$
- 4. Sei E|K ein Zerfällungskörper von $f \in K[X]$. Wir betrachten eine Körpererweiterung K' von K und einen Zerfällungskörper E' von f über K'. Sei $\sigma \in \operatorname{Gal}(E'|K')$. Zeigen Sie, dass $\sigma(E) = E$ und, dass der resultierende Gruppenhomomorphismus

$$Gal(E'|K') \to Gal(E|K), \quad \sigma \mapsto \sigma|_E$$

injektiv ist.

Lösung: Sei R(f) die Menge der Nullstellen von f. Da E ein Zerfällungskörper von f ist, gilt $E = K(R(f)) \subset E' = K'(R(f))$, da K' eine Körpererweiterung von K ist. Ist $\sigma \in \operatorname{Gal}(E'|K')$, dann fixiert σ den Körper K. Ausserdem sendet σ Nullstellen von f auf Nullstellen von f, und damit $\sigma(E) = \sigma(K(R(f))) \subset K(R(f)) = E$. Dies zeigt, dass die Abbildung in der Aufgabenstellung definiert ist, und damit ein Homomorphismus.

Sei nun σ ein Element im Kern dieser Abbildung. Dann fixiert $\sigma \in \operatorname{Gal}(E'|K')$ ganz E = K(R(f)). Da $\sigma \in \operatorname{Gal}(E'|K')$ fixiert σ auch K' per Definition. Zusammengenommen folgern wir, dass σ somit auch K'(R(f)) = E' fixiert, und damit ist $\sigma = \operatorname{id}_{E'}$. Daraus folgt, dass die Abbildung injektiv ist, was zu zeigen war.

5. Seien E|K und E'|K Zerfällungskörper eines Polynoms $f \in K[X]$. Zeigen Sie, dass falls E in einer radikalen Körpererweiterung von K enthalten ist, so ist auch E' in einer radikalen Körpererweiterung von K enthalten.

Lösung: Sei L eine radikale Körpererweiterung von K, die E enthält. Sei $L = K(u_1, \ldots, u_t)$ und p_i das Minimalpolynom von u_i über K. Setze $g = \prod_{i=1}^t p_i$. Sei F ein Zerfällungskörper von g über K. Nach Lemma 3.6 und Lemma 3.7 ist F|K eine radikale Körpererweiterung (da L radikal ist, ist die Voraussetzung von Lemma 3.7 erfüllt).

Da Zerfällungskörper bis auf Isomorphie eindeutig sind, existiert ein Isomorphismus $\varphi: E \to E'$ mit $\varphi(k) = k$ für alle $k \in K$. Da $\varphi_*(g) = g$, existiert ein Isomorphismus Φ , der φ erweitert, von F in einen Zerfällungskörper F' von g, das heisst $\Phi: F \to F'$ mit $\Phi_{|E} = \varphi$, siehe Proposition II.16. Nach dem selben Argument wie oben ist F' eine radikale Körpererweiterung von K. Da Φ die Abbildung φ erweitert, ist $\Phi(E) = E'$ und somit ist $E' \subset F'$ in einer radikalen Erweiterung enthalten.

6. Zeigen Sie, dass falls E ein endlicher Körper ist und $K \subset E$ ein Unterkörper, dann ist $\operatorname{Gal}(E|K)$ zyklisch.

Lösung: Sei $p = \operatorname{char}(E)$. Dann ist $E = \mathbb{F}_{p^n}$ und $K = \mathbb{F}_{p^m}$ für $m, n \in \mathbb{N}$ mit m|n. Aus der Vorlesung wissen wir bereits, dass $\operatorname{Gal}(\mathbb{F}_{p^n}|\mathbb{F}_p)$ zyklisch ist. Da $\operatorname{Gal}(\mathbb{F}_{p^n}|\mathbb{F}_{p^m})$ eine Untergruppe von $\operatorname{Gal}(\mathbb{F}_{p^n}|\mathbb{F}_p)$ ist, ist diese auch zyklisch.