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Exercise Class 2

Abstract Measure Spaces

One might expect that a measure as a generalization of length, area, and volume fulfills
the following properties:

i) The measure µ is a non-negative extended real-valued function defined for all
subsets of Rn.

ii) The measure is translation invariant, i.e. µ(A) = µ(A+ x) for A ⊆ Rn and x ∈ R.

iii) Any product of intervals [a, b]n has measure (b− a)n.

iv) The measure is σ-additive, i.e.

µ

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

µ(Ak)

for any sequence (Ak) of mutually disjoint subsets of R.

As it turns out, these requirements are incompatible. Thus, we have to lower our
expectations. Dropping property ii) or iii) allows us to define a measure on P(X),
however, this notion is in no way a generalization of our geometric intuition for length,
area, and volume. Without ii), we obtain e.g. the Dirac measure and without iii), we
obtain the trivial measure, i.e., the map which assigns to any set the measure 0. Relaxing
the fourth property, that is, not requiring σ-additivity, essentially leads to the theory of
Riemann integration, whose limitations put us in this spot in the first place. Instead, we
decide to relax property i) and only define the measure for a class of “nice” subsets. We
now aim to define a map to pick out a suitable class of subsets (to be called measurable)
such that we still have the σ-additivity property.

We will now work in more abstract and general setting in which the Euclidean space
Rn is replaced by a more general space X.

1 Definition of Measures

In order to properly define measure on a general space X, one needs to specify two
pieces of data:

i) A collection A of subsets of X that one is allowed to measure;

ii) A measure µ : A → [0, ∞] which assigns a measure to each set A ∈ A.

The collection A should have the structure of a σ-algebra, as it was discussed last
week. (For details, see the notes from Exercise Class 1.) We refer to the pair (X,A) as
a measurable space.

Having now defined the concept of a σ-algebra and a measurable space, we now
endow these structures with a measure. What properties should a measure satisfy in
general?

Definition 1. A mapping µ : A → [0,∞] is called a measure on X if

i) µ(∅) = 0;
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ii) σ-additivity: For all countable collections (Ak)k of pairwise disjoint sets in A,

µ

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

µ(Ak).

A triplet (X,A, µ) is called a measure space.
Note that this definition is not the same as in the Lecture Notes. They are not

equivalent either! Recall the definition from the lecture.

Definition 2. A mapping µ : P(X)→ [0,∞] is called an outer measure on X if

1. µ(∅) = 0;

2. µ(A) ≤
∑∞

k=1 µ(Ak) whenever A ⊆
⋃∞

k=1Ak.

Note that the notion of outer measures are weaker than measures in that they are
merely countably subadditive, rather than countably additive. On the other hand, outer
measures are able to measure all subsets of X, whereas measures are only defined on a
σ-algebra of measurable sets. Why do we not differentiate between these notions in this
lecture?

Recall Carathéodory’s definition of measurability.

Definition 3 (Carathéodory). Let X be a set with an outer measure µ. We say that
A ⊆ X is µ-measurable if for all B ⊆ X

µ(B) = µ(B ∩A) + µ(B ∩Ac).

Intuitively, µ-measurable sets are the ones that can be used for breaking any other
subset (B in the definition) apart into pieces. This way we can compute the measure of
the pieces and consider the sum. The naive belief might be that every set is measurable
and the measure would satisfy

µ(E1 ∪ E2) = µ(E1) + µ(E2) for E1 ∩ E2 = ∅.

However, even the most natural of measures (i.e., the Lebesgue measure) fails to satisfy
this property, provided one accepts the axiom of choice (think of the Banach–Tarski
paradox).

Theorem 4. Given any outer measure µ on X, the collection of µ-measurable sets of
X is a σ-algebra and the restriction of µ to this σ-algebra is a measure.

We can see that every outer measure gives rise to a proper measure via restriction.
Due to that, we do not distinguish between these notions in this lecture.

2 Construction of Measures

A priori, it is not clear how one would construct a measure based on the definition of
an (outer) measure. We are, however, able to define finitely additive maps. It is now
natural to ask whether we are able to extend this finitely additive map to a measure. In
other words, given a finitely additive measure1 µ̃ : Ã → [0,∞] on an algebra Ã, can we
find a refining σ-algebra A and a σ-additive measure µ : A → [0,∞] that extends µ̃?

1I am aware that I am being a bit nonchalant with the definitions here.
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There is one obvious necessary condition such that µ̃ can be extended to a measure,
namely that µ̃ already is σ-additive within Ã. That is, suppose that (Ak) is a sequence
of mutually disjoint sets in Ã such that their union

⋃∞
k=1Ak is in Ã as well, then it is

necessary that

µ̃

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

µ̃(Ak).

Using the Carathéodory-Hahn extension, we can show that this necessary condition is
already sufficient. More precisely:

Definition 5. Let Ã ⊆ P(X) be an algebra. A mapping λ : Ã → [0,∞] is called a
pre-measure if

i) λ(∅) = 0;

ii) λ(A) =
∑∞

k=1 λ(Ak) for every A ∈ Ã such that

A =
∞⋃
k=1

Ak

for Ak ∈ Ã mutually disjoint.

Theorem 6 (Carathéodory-Hahn extension). Let λ : Ã → [0,∞] be a pre-measure on
X. For A ⊆ X, define

µ(A) := inf


∞∑
k=1

λ(Ak) : A ⊆
∞⋃
k=1

Ak, Ak ∈ Ã

 .

Then µ is an outer measure extending λ and every A ∈ Ã is µ-measurable.
If λ is σ-finite, then the extension is unique.

This theorem allows one to construct a measure by first defining it on a small algebra
of sets, where its σ-additivity could be easy to verify. Using this, we are now able to
construct a measure such that it satisfies the properties mentioned in the beginning
excluding the measurability of all sets, i.e., non-negativity, translation-invariance, σ-
additivity, and the fact that µ([a, b]n) = (b−a)n. This leads us to the so-called Lebesgue
measure.

The σ-finiteness cannot be removed if one wants uniqueness.

Example 7. Consider the space R. Take the algebra generated by all half-open intervals
[a, b) on R. We define a pre-measure

λ(A) =

{
0 A = ∅,

∞ otherwise

The Carathéodory extension gives all non-empty sets measure infinity. However, there
exists another extension given by the counting measure.

Questions and Remarks to: maranm@student.ethz.ch 3

mailto:maranm@student.ethz.ch

	Definition of Measures
	Construction of Measures

