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Exercise Class 5

Fractals and the Hausdorff Dimension

The following notes try to provide heuristic methods to understand fractal sets and the
Hausdorff dimension. Thus they are far from being rigorous.

In the last few weeks, we have seen that the Cantor set satisfies a peculiar set of
properties. It is an uncountable set of measure zero. Moreover, as you might know from
topology, it is a set that is nowhere dense and yet has no isolated points (i.e., it is a
perfect set). There is an additional interesting property, namely its self-similarity. It
is self-similar because it is equal to two copies of itself, each copy scaled by a factor of
1/31. This self-similarity makes the Cantor set a prototype of a fractal set. What does
that exactly mean?

Understanding Fractals

There is not really an agreed upon pedantic definition for a fractal. Yet, most people
have some idea what a fractal set should look like. A common misconception is that
fractal sets are perfectly self-similar shapes. Mandelbrot, the father of fractal geometry,
had a much broader conception in mind — a notion which is able to model the naturally
occuring roughness of shapes such as coastlines or mountains.

In some ways, fractal geometry is the antithesis of calculus whose central assumption
is that things “smooth out if you zoom in far enough” — just think of the notion of
manifolds for example. For many shapes occuring in nature this assumption is overly
idealized. A famous example of the limitations of that assumption is the so-called
Coastline paradox — the counterintuitive observation that the coastline of a landmass
does not have a well-defined length. The closer one looks, the longer the coastline gets.
This is due to the fractal curve-like properties of coastlines.

Even though perfectly self-similar shapes make for a more restrictive notion than
fractal sets, they are a good starting point to understand fractals.

Fractal Dimension

The technical definition of fractals, at least as Mandelbrot phrased it, has to do with
fractal dimension, or more specifically, with Hausdorff dimension. Mandelbrot defined
fractal as follows: “A fractal is by definition a set for which the Hausdorff-dimension
strictly exceeds the topological dimension.”2 Dimension is a very intuitive idea in the
real world, but in order to get a handle on its generalization (the Hausdorff dimension),
we have to change the way we think about it. Instead of thinking about dimension in
the way it was defined in linear algebra, consider it as some sort of scaling property.

More precisely, for a geometric object M and a scaling factor s ∈ R, the dimension
satisfies the relation

µ(sM) = sDµ(M),

where µ is assumed to be some sensible notion of volume here such that µ(M) 6= 0,∞.
Otherwise, the equation would be quite meaningless.

1Check out this gif, which makes the self-similarity of the Cantor set apparent.
2He later considered this definition as too restrictive and simplified it even further to “A fractal is

a shape made of parts similar to the whole in some way.” Still later, Mandelbrot proposed to “use
fractal without a pedanctic definition and use fractal dimension as a generic term applicable to all the
variants.”
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Figure 1: Scaling behaviour compared to traditional notion of dimension.

It can be easily seen that such an equation holds for the line (D = 1), the square
(D = 2) and the cube (D = 3). See Figure 1.

Assuming we have a useful measure for the Cantor set, we can derive a similar
equation as above. We have seen in the introduction that the Cantor set is equal to two
copies of itself scaled by 1/3, or equivalently

µ(3 · C) = 2 · µ(C).

We obtain that

3D = 2 ⇐⇒ D =
log(2)

log(3)
≈ 0.6309...

So in some sense, the Cantor set is neither 0-dimensional, nor 1-dimensional. That is,
neither the 0-dimensional notion of volume (the counting measure) nor the 1-dimensional
one (Lebesgue) captures the structure of the Cantor set. The same holds, if one thinks
of the coastline example. Apparently, the length of coastlines is infinite, and yet the
area is 0. Instead, what one wants, is whatever the D-dimensional analogue of length
is. This will then be our measure µ.

Box-counting Dimension

In our (highly non-rigorous) computations of the fractal dimension, we relied on the
self-similarity of the shapes in consideration. This is very restrictive since most shapes
are not self-similar. Take the unit disk for example. We know that scaling the radius by
2 increases the area of the disk by 4 (hence the disk is a 2-dimensional object). However,
it is not possible to rebuild the rescaled disk using 4 copies of the initial disk.

Just as with Carathéodory extensions, we use coverings (see Theorem 1.2.17 in the
Lecture Notes). One possible choice of coverings would be to use boxes and then to
simply count the number of boxes it touches (see Figure 2). With this box-counting
procedure, we can proceed similarly as before. We can rescale the geometric object in
question and check the number of boxes it touches after that. Leaving out some technical
details, this then leads to what is known as the box-counting dimension or Minkowski
dimension. The box-counting dimension thus gives us a quantitative way to describe
roughness that persists on many different scales. And this is the notion of self-similarity
one should have in mind when thinking of fractals.
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Figure 2: Box-counting dimension of the coast of Great Britain [MD10]

We have yet to define the Hausdorff dimension which Mandelbrot refers to in his
definition. This will be the topic of the next section.

Hausdorff measure and dimension

The Hausdorff dimension is similar to the box-counting dimension explained before. But
in some sense, it counts using balls instead of boxes. In many cases the Hausdorff di-
mension coincides with the box-counting dimension. However, the Hausdorff dimension
is slighly more general, at the cost of being slightly more difficult to describe.

Recall that for the dimension to make sense, we needed an appropriate measure such
that µ(A) 6= 0,∞ for the set A in question. We now want to construct that measure.

Definition 1. For s ≥ 0, δ > 0 and ∅ 6= A ⊆ Rn, we set

Hsδ(A) = inf

{∑
k∈I

rsk, A ⊆
⋃
k∈I

B(xk, rk), 0 < rk < δ

}
.

We also set H0
δ(∅) = 0. The set of indices I is at most countable.

This is a non-increasing function of δ Hence its monotone limit exists.

Definition 2. We call Hs the s-dimensional Hausdorff measure on Rn, where

Hs(A) = lim
δ↓0
Hsδ(A)

for any A ⊆ Rn.

Remark. Observe that H0 is the counting measure.

The following lemma is crucial in the definition of the Hausdorff dimension.

Lemma 3. Let A ⊆ Rn and 0 ≤ s < t <∞. It holds

i) Hs(A) <∞ =⇒ Ht(A) = 0.

ii) Ht(A) > 0 =⇒ Hs(A) =∞.
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If we consider the Hausdorff measure of a fixed set A as a function of s, this lemma
tells us that there is at most one interesting value for s. Suppose that for some s ≥ 0,
we have 0 < Hs(A) < ∞, then for all t 6= s, the measure Ht(A) is either 0 or ∞. This
value s is what we choose to define as dimension.

Definition 4. The Hausdorff dimension of a set A ⊆ Rn is defined to be

dimH(A) := inf{s ≥ 0 : Hs(A) = 0} = sup{s ≥ 0 : Hs(A) =∞}.

Note that this definition of dimension allows for non-integer dimensions. Intuitively,
we try to measure the set A in every possible dimension and then pick the “best” one.
This is what we then call the Hausdorff dimension.

The Hausdorff dimension is a measure of roughness. For sufficiently smooth shapes,
the Hausdorff dimension is an integer which coincides with the topological dimension.
Note, however, that sets with non-integer Hausdorff dimensions occur very often in
nature and sets with Hausdorff dimensions equal to their topological dimension tend to
be man-made.

See here for a list of fractals and their Hausdorff dimension.
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