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Exercise Class 9

Lebesgue Integration Theory1

Lebesgue Integration as an Extension Riemann Integration

We have now defined measures and what it means to be measurable (be it for sets or
functions).

Let µ be the Lebesgue measure on Rn and Ω ⊂ Rn a Lebesgue measurable set. We
are now able to define the Lebesgue integral.∫

Ω
fdµ.

Just as not every set is µ-measurable, not every function is µ-integrable; the function will
need to be µ-measurable. To define the integral with respect to µ, we turn to another
more basic notion of integration, namely the Riemann integral∫ b

a
f(x)dx

of a Riemann-integrable function f : [a, b]→ R. Recall that this integral (if it exists) is
equal to the supremum of the lower Riemann sums∫ b

a
f(x)dx =

∫ b

a
f(x)dx := sup

g≤f
g step function

∫ b

a
g(x)dx,

where the integral of step functions (or piecewise constant functions) was defined as∫ b

a
g(x)dx =

N∑
i=1

(xi − xi−1)g(xi),

where the partition {xi | i = 0, . . . N} breaks up the step function into finite linear
combinations of characteristic functions χI of intervals I. (It is also equal to the infimum
of upper Riemann sums, but for the moment we solely rely on lower integrals for brevity.)

It turns out that virtually the same definition allows us to define a lower Lebesgue
integral ∫

Ω
fdµ

of any measurable function f : Rn → [−∞,∞]. One simply needs to replace the intervals
I with the more general class of µ-measurable sets and thus replace piecewise constant
functions with the more general class of simple functions. That is,∫

Ω
fdµ = sup

g≤f µ−a.e.
g simple function

∫
Ω
gdµ.

As we shall see, it obeys all the basic properties one expects of an integral, such as
monotonicity and linearity; we will also see that it behaves quite will with respect to

1Today’s notes are taken from [Tao11]
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limits. We will first establish Fatou’s lemma and the monotone convergence theorem
before proving what is essentially the cornerstone of Lebesgue integration theory — the
dominated convergence theorem. This convergence theorem makes the Lebesgue integral
(and its abstract generalizations to other measure spaces than Rn) particularly suitable
for analysis, as well as related fields that rely heavily on limits of functions, such as PDE
theory, probability theory, and ergodic theory.

Remark. This is not the only route to setting up the Lebesgue integral. For instance,
in [SS09] the authors proceed in four stages, by progressively integrating

1. Simple functions

2. Bounded functions supported on a set of finite measure

3. Non-negative functions

4. Integrable functions (the general case).

Another approach is to take the metric completion of the Riemann integral with respect
to the L1 metric.

The Lebesgue integral and Lebesgue measure can be viewed as completions of the
Riemann integral and Jordan measure2 respectively. That is, Lebesgue integration the-
ory extends the Riemann theory: every Jordan measurable set is Lebesgue measurable,
and every Riemann integrable function is Lebesgue measurable, with the measures and
integrals from the two theories being compatible. Conversely, the Lebesgue theory can
be approximated by the Riemann theory; as we saw in Exercise Class 8 every Lebesgue
measurable set can be approximated (in the appropriate sense) by simpler sets such as
open sets or elementary sets. In a similar fashion, Lebesgue measurable functions can
be approximated by nicer functions, such as continuous functions. Finally, the Lebesgue
theory is complete in various ways (as you will see in the chapters on Lp-spaces). The
convergence theorems already hint at this completeness. Egorov’s theorem is also related
to that completeness.

Abstract Integrals

Note that there was no reason for us to restrict ourselves to the Lebesgue measure.
The measure µ can be any Radon measure on Rn and the same construction yields
an integral with respect to the measure µ. That integral still satisfies basic properties
that we are used to, such as mononotonicity and linearity. However, by changing the
measure, one does not necessarily obtain a generalization of the Riemann integral, but
sometimes something completely different. We consider three such examples.

Example. We consider what happens when one considers the Dirac measure δz defined
by

δz(A) =

{
1, if z ∈ A,

0, else

for any measurable set A. The corresponding integral is then defined as∫
A
fdδz =

{
f(z), z ∈ A,

0 z /∈ A.
2Strictly seen, the Jordan measure is not a measure.
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Example. Another simple example is to consider µ to be the couting measure on N. As
it turns out, integration with respect to the counting measure is just summation. One
obtains that ∫

N
fdµ =

∞∑
k=1

f(k).

Example. Lastly, recall the Lebesgue–Stieltjes measure, which is defined as the Carathéodory–
Hahn extension of

λg([a, b)) =

{
g(b)− g(a) if a < b,

0 otherwise,

where g : R→ R is a non-decreasing3 and right-continuous function, and a, b ∈ R. The
Lebesgue–Stieltjes integral ∫ b

a
fdΛg

is then defined as the integral of f with respect to the measure Λg. Thus we are able
to integrate functions with respect to (or against) functions of bounded variation. The
Lebesgue–Stieltjes integral is often denoted by∫ b

a
fdg

and it finds common application in probability theory and stochastic processes, as well
as in certain branches of analysis such as potential theory.

Remark. If one wants to generalize this integral to less regular functions one enters
the realm of stochastic integration and rough path theory. There, one can construct
integrals with respect to stochastic processes such as Brownian motion.

Almost Everywhere

In the lecture, we were able to prove monotonicity in the following sense.

Proposition. Let f1, f2 : Ω→ [−∞,∞] be µ-integrable with f1 ≥ f2 µ-a.e. Then∫
Ω
f1dµ ≥

∫
Ω
f2dµ.

As a corollary, one obtains

Corollary. Let f1, f2 : Ω→ [−∞,∞] be µ-integrable with f1 = f2 µ-a.e. Then∫
Ω
f1dµ =

∫
Ω
f2dµ.

We now comment further on the fact that functions that agree almost everywhere
have the same integral. We can view this as an assertion that integration is a noise-
tolerant operation: one can have “noise” or “errors” in a function f(x) on a null set,
and this will not affect the final value of the integral. Indeed, once one has this noise
tolerance, one can even integrate functions f that are not defined everywhere on Rn,

3the monotonicity can be generalized to bounded variation
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but merely almost every on Rn, simply by extending f to all of Rn in some arbitrary
fashion (e.g. by setting f equal to zero on the nullset). This is extremely convenient for
analysis, as there are many natural functions that are only defined almost everywhere
instead of everywhere (often due to division by zero problems when a denominator
vanishes). While such functions cannot be evaluated at certain singular points, they can
still be integrated (provided they obey some integrability conditions), and so one can
still perform a large portion of analysis on such functions.

In fact, in the subfield of analysis known as functional analysis, it is convenient to
abstract the notion of an almost everywhere defined function somewhat, by replacing
any such function f with the equivalence class of almost everywhere defined functions
that are equal to f almost everyhwere. Such classes are then no longer functions in the
standard set-theoretic sense, but the properties of various function spaces improve when
one does this (various pseudo-norm become norms, various topologies become Hausdorff,
and so forth).

The “Lebesgue philosophy” is that one is willing to lose control on sets of measure
zero. This perspective is what distinguishes Lebesgue-type analysis from other types
(most notable descriptive set theory). This loss of control on null sets is the price one
has to pay for gaining access to the Lebesgue integral.
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