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Exercise Class 10

Convergence Results and Absolute Continuity1

The Convergence Theorems

Let µ be a Radon measure on Rn and Ω be µ-measurable. Let f1, f2, · · · : Ω→ [0,+∞]
be a sequence of extended real valued non-negative measurable functions and suppose
that fn(x) convergese pointwise µ-a.e. to a measurable limit f . A basic question in the
subject of analysis is to determine the conditions under which such pointwise convergence
would imply convergence of the integral:∫

Ω
fndµ

?−→
∫

Ω
fdµ.

That is, when can we ensure that one can interchange integrals and limits,

lim
n→∞

∫
Ω
fndµ

?
=

∫
Ω

lim
n→∞

fndµ?

We already know one case in which one can safely do this, namely uniform conver-
gence on a finite measure space. Note that the finiteness assumption is indeed necessary
as one of the following examples will demonstrate. There are further cases in which one
cannot interchange limits and integrals. We consider three classic examples for that (see
Exercise 9.5) — all of the “moving bump” type:

Example 1 (Escape to horizontal infinity). Let Ω = R equipped with the Lebesgue
measure λ. Define fn := 1[n,n+1]. Then fn converges pointwise to f := 0, but

∫
R fndλ =

1 does not converge to
∫
R fdλ = 0. Intuitively, all the mass in the fn has escaped by

moving off to infinity in a horizontal direction, leaving none behind for the pointwise
limit.

Example 2 (Escape to width infinity). Let Ω = R be equipped with the Lebesgue
measure λ. Define fn := 1

n1[0,n]. Then fn converges uniformly to f := 0, but
∫
R fndλ = 1

still does not converge to
∫
R fdλ = 0. One could prevent this from happening if all the

fn were supported on a single set of finite measure. However, the increasingly wide
nature of the support of the fn violates that.

Example 3 (Escape to vertical infinity). Let Ω = [0, 1] equipped with the Lebesgue
measure λ (restricted from R). Define fn := n1[ 1

n
, 2
n

]. Now, we have finite measure,

and fn converges pointwise to f , but no uniform convergence. Again, we have that∫
[0,1] fndλ = 1 is not converging to

∫
[0,1] fdλ = 0. This time, the mass has escaped

vertically through the increasingly large values of fn.

Once one shuts down these avenues of escape to infinity, it turns out that one can
recover convergence of the integral. There are two major ways to accomplish this. One
is to enforce monotonicity, which prevents each fn from abandoning the location where
the mass of the preceding f1, . . . , fn−1 was concentrated and thus shuts down the above
three escape scenarios. More precisely, we have the monotone convergence theorem:

1The section on convergence theorems is taken from [Tao11], while the section on absolute continuity
is based on Tobias Castelberg’s notes.
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Theorem 4 (Monotone Convergence Theorem, Beppo–Levi). Let fn : Ω→ [0,+∞] be
µ-measurable for all n ≥ 1 and be such that fn ≤ fn+1 for all n ≥ 1. Then it holds∫

Ω
lim
n→∞

fndµ = lim
n→∞

∫
Ω
fndµ.

Remark. One can easily see that the result still holds if the monotonicity fn ≤ fn+1

only holds µ-a.e. rather than everywhere.

Note that in the special case when each fn is an indicator function fn = 1En for
measurable sets En, this theorem collapses to continuity from below. Conversely, one
could use the continuity from below to prove the monotone convergence theorem (instead
of using Fatou’s lemma).

This theorem has a number of important corollaries. One can prove a version of
Tonelli’s theorem for sums and integrals, the Borel–Cantelli lemma, and Fatou’s lemma
(provided it was not used to prove Beppo–Levi in the first place). Fatou’s lemma gives
us an important inequality when one does not have monotonicity.

Theorem 5 (Fatou’s lemma). Let fn : Ω → [0,+∞] be µ-measurable for all n ≥ 1.
Then it holds that ∫

Ω
lim inf
n→∞

fndµ ≤ lim inf
n→∞

∫
Ω
fndµ.

Proof. Define FN := infn≥N fn for each N and apply the monotone convergence theo-
rem.

Remark. Informally, Fatou’s lemma tells us that when taking the pointwise limit of
measurable functions fn, that mass

∫
Ω fndµ can be destroyed in the limit (as was the

case in the moving bump examples), but it cannot be created in the limit.

Finally, we consider the other major way to shut down loss of mass via escape to
infinity, which is to dominate all of the functions involved by an absolutely convergent
one. This result is known as the dominated convergence theorem:

Theorem 6 (Dominated Convergence Theorem, Lebesgue). Let g : Ω → [0,+∞] be
µ-summable and f : Ω → [−∞,∞], {fk}k : Ω → [−∞,∞] be µ-measurable. Suppose
|fk| ≤ g and fk → f µ-a.e. as k →∞. Then

lim
k→∞

∫
Ω
|fk − f | dµ = 0.

Moreover

lim
k→∞

∫
Ω
fkdµ =

∫
Ω
fdµ.

From the moving bump examples we see that this statement fails if there is no µ-
summable dominating function g. Note also that when each of the fn is an indicator
function fn = 1En for measurable sets En, the dominated convergence theorem collapes
to (a version) of continuity from above.

Remark. In this lecture, we deduced the dominated convergence theorem and the mono-
tone convergence theorem from Fatou’s lemma. However, these theorems are so closely
related that one can obtain these theorems in a different order, depending on one’s taste.
It is instructive to view a couple different derivations of these key results to get more of
an intuitive understanding as to how they work.
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ETH Zürich
Maran Mohanarangan

Another corollary of the monotone convergence theorem is the following:

Corollary 7. Let f : Ω→ [0,∞) be a µ-measurable function and let

ν(E) :=

∫
E
fdµ, E measurable.

Then ν is a measure on Ω. Further, if g : Ω→ [0,∞] is a µ-measurable function, then∫
Ω
gdν =

∫
Ω
gfdµ.

Proof. Clearly ν(∅) = 0. Suppose that {En} is a countable disjoint family of measurable
sets. Then

ν

(⋃
i

Ei

)
:=

∫
Ω
1∪iEifdµ.

Now, observe that

1∪iEif = lim
n →∞

1∪ni=1Eif = lim
n→∞

∞∑
i=1

1Eif,

where (
∑n

i=1 1Eif) is an increasing sequence of non-negative measurable functions.
Hence by the monotone convergence theorem,∫

Ω
1∪iEifdµ = lim

n→∞

∫
Ω

n∑
i=1

1Eif =
∞∑
i=1

∫
Ω
1Eif.

Thus,

ν

(⋃
i

Ei

)
=

∞∑
i=1

ν(Ei).

This completes the first part of the corollary.
Next, we observe that the second statements holds if g is a characteristic function of

a measurable set. Indeed, if g = 1E for some measurable set, then∫
Ω
gdν =

∫
Ω
1Edν = ν(E)

and ∫
Ω
gfdµ =

∫
Ω
1Efdµ =

∫
E
fdµ

so that the equality holds by definition. Now, using the linearity of the integral, the
equality holds for all simple non-negative measurable functions as well. Since any mea-
surable function g : Ω → [0,∞] is a pointwise limit of an increasing sequence of simple
non-negative measurable functions, the proof can be completed by invoking the mono-
tone convergence theorem (or Lebesgue’s theorem).

The relation in the previous corollary is usually written as

dν = fdµ or
dν

dµ
= f,

and f is called the Radon–Nikodym derivative of ν with respect to µ. The notation is
very convenient as ∫

E
dν =

∫
E
fdµ =

∫
E

dν

dµ
dµ.
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Note that we have the following implication

µ(E) = 0 =⇒ ν(E) = 0

for all µ-measurable sets E.
This phenomenon is called absolute continuity and it will be the topic of the following

section.

Absolute Continuity

The concept of absolute continuity is not just relevant in probability theory, but also
in statistics. In statistics, you somehow do the opposite of what you do in probability
theory: you start with samples and try to deduce which distribution generated the
samples.

Example 8. Suppose you measure the number of customers in a supermarket during
the span of a week from 9am to 12am. We get the following result:

(745, 692, 715, 1012, 557, 545).

We obtain 711 customers as an arithmetic mean and consequently, we consider the
following models:

• X P∼ Bin(1000, 0.711);

• X Q∼ Poisson(711).

Both models satisfy E[X] = 711 (without really defining what E means), however, the
Binomial distribution does not make a lot of sense for this date. It is impossible that a
binomially distributed random variable with parameters n = 1000 and p ∈ [0, 1] takes
the value 1012! Thus the sample could not have been generated by Bin(1000, 0.711).

The concept behind this phenomenon is called absolute continuity. Let P and Q
be two probability measures on the same sample space (Ω,A). Suppose you consider
an arbitrary sample ω ∈ Ω generated by Q. If it is possible to eliminate that ω was
generated by P , then Q is not absolutely continuous with respect to P .

In Example 8, we have that X(ω) = 1012 is a sample which was possibly generated

by Q, since Q[X = 1012] = e−711 7111012

1012! > 0. On the other hand, we have that P [X =
1012] = 0 and hence X could not have been generated by P . In other words, Q is not
absolutely continuous with respect to P .

P , on the other hand, is absolutely with respect to Q, since every value x = X(ω) ∈
{0, 1, . . . , 1000} which can possibly be generated by P , can also by generated by Q.
Thus, if P has generated the sample, we cannot say with certainty whether P or Q has
generated the sample by just looking at it.

Definition 9. Suppose that µ and ν are measures on a measurable space (Ω,Σ). Then
ν is absolutely continuous with respect to µ if for every E ∈ Σ

µ(E) = 0 =⇒ ν(E) = 0,

and we write ν � µ.
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If we define ν as in Corollary 7, then we know that ν � µ. Now we can ask ourselves
whether the converse is true as well. That is, if µ and ν are measures such that ν � µ,
then does there exist a measurable function f ≥ 0 such that

ν(E) =

∫
E
fdµ ∀E ∈ Σ.

The answer is yes and this result is called the Radon–Nikodym theorem.

Theorem 10 (Radon–Nikodym). If µ and ν are σ-finite measures on a measurable
space Ω such that ν � µ, then there exists a non-negative measurable function f , such
that

ν(E) =

∫
E
fdµ

for all measurable sets E.

The Radon–Nikodym theorem is important in probability theory due to the following
consideration.

Recall from Exercise Class 6 that if (Ω,F , P ) is a probability space and X : Ω→ R
is a random variable on it, then the probability distribution of X is the probability
measure ν defined on (R,B(R)) by the pushforward

ν(B) = P (X−1(B)), B ∈ B(R).

Furthermore, we defined the distribution function of X as the function F : R→ R with

F (x) := P (X ≤ x).

Thus, if we can establish that ν is absolutely continuous with respect to the proba-
bility measure Radon measure µ on R, then as a consequence of Radon–Nikodym, there
exists a non-negative µ-measurable function f : R→ R such that

F (t) =

∫
(−∞,t]

fdµ, t ∈ R.

Such a function f , given that it exists, is called the probability density function of the
random variable X. In short, a probability density function is just a Radon–Nikodym
derivative. This allows us to fully motivate the usual formula to compute expectations.

We usually consider two measures for the Radon measure µ. For discrete random
variables, we take µ to be the counting measure. Recall that integration with respect to
the counting measure is just summation. Combine this with the change of variables for-
mula from Exercise Class 6 to obtain that for a discrete random variable with absolutely
continuous distribution, we have

E[X] =

∫
Ω
X(ω)dP (ω)

C.o.V.
=

∫
N
xdν(x)

R.N.
=

∫
N
xf(x)dµ(x) =

∞∑
n=0

xP (X = x).

Similarly, if we have a continuous random variable such that its distribution is ab-
solutely continuous with respect to the Lebesgue measure, we have

E[X] =

∫
Ω
X(ω)dP (ω)

C.o.V.
=

∫
R
xdν(x)

R.N.
=

∫
R
xf(x)dµ(x).

Remark. Not every distribution is absolutely continuous with resepct to the Lebesgue
or counting measure. We have already encountered the Cantor distribution as such an
example in Exercise Class 4.
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