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ETH Zürich
Maran Mohanarangan

Exercise Class 12

Lp-spaces1

Definition

Let Ω ⊂ Rn and µ be a Radon measure; notions such as “measurable”, “almost every-
where”, etc. will always be with respect to the measure µ. Moreover, unless otherwise
specified, all subsets and functions mentioned are supposed to be measurable.

We already have the notion of a summable function, which is a function f : Ω→ R
such that

∫
Ω|f | dµ is finite. More generally, given any exponent 1 ≤ p < ∞, we can

define a pth-power integrable function to be a function f : Ω→ R such that
∫

Ω|f |
p dµ is

finite. In short, we denote the collection of such functions by Lp(Ω, µ).
Following the “Lebesgue philosophy” that we can neglect what happens on nullsets,

we declare two functions to be equivalent if they agree almost everywhere, i.e.

f ∼ g :⇐⇒ f = g µ-a.e.

This is, in fact, an equivalence relation (see Exercise Class 7). This allows us to define
the spaces Lp(Ω, µ) to be the space of pth-power summable functions, quotiented by
this equivalence relation. So, strictly speaking, an element of Lp(Ω, µ) is not a function
f , but rather an equivalence class of functions [f |] which agree almost everywhere. We
shall consistently abuse notation and just write f for an element of Lp(Ω, µ) and call it a
function nonetheless. For the purpose of integration, this equivalence is quite harmless,
however, this means that we cannot evaluate functions at a single point x if that point
has measure zero. One possible way to think about elements of Lp is that they are
functions which are “unreliable” on an unknown set of measure zero.

Remark. Depending on which part of the measure space (Ω, µ) one wishes to emphasize,
the space Lp(Ω, µ) is often denoted by Lp(Ω) or Lp(µ), or even just Lp. Since the
measure space (Ω, µ) is fixed in our case, we shall use the Lp abbreviation from now on.

At the moment, Lp is just a set. We can endow it with a vector space structure.
The corresponding operations in Lp are defined via representatives; so f +g for instance
is in Lp the equivalence class associated to the sum of one representative each from
the respective equivalence classes of f and g. One can define scalar multiplication in
a similar way. It is tedious but straightforward to check that this makes everything
well-defined.

Next, let us set up the norm structure. If f ∈ Lp, we define the Lp norm ‖·‖Lp of f
to be the number

‖f‖Lp :=

(∫
Ω
|f |p dµ

)1/p

.

This is a finite non-negative number by definition of Lp; in particular, we have

‖f r‖Lp =‖f‖rLpr

for all 1 ≤ p, r <∞.
We can then prove that ‖·‖Lp does indeed define a norm on the space Lp. The

only non-trivial thing to prove is, in fact, the triangle inequality. Note that the Lp

norms would have been seminorms, if we did not equate functions that agreed almost
everywhere because in that case, ‖·‖Lp does not satisfy positive definiteness.

1Today’s notes are partly based on [Tao11]
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The L∞ space

We can now define Lp norms and spaces in the limit p = ∞. We say that a function
f : Ω → R is essentially bounded if there exists a constant C such that

∣∣f(x)
∣∣ ≤ C for

almost every x ∈ Ω. Hence, we define

‖f‖L∞ := inf{C > 0 : |f | ≤ C µ−a.e.}.

We then let L∞ denote the space of essentially bounded functions, quotiented out by
equivalence, and given the norm ‖·‖L∞ . It is fairly straightforward to see that this is
also a normed vector space.

Let us explain, why we call this the L∞ norm.

Example 1. Let f be given by f = a1E for some constant a > 0 and some set E with
positive finite measure. Then

‖f‖Lp = aµ(E)1/p

for all 1 ≤ p <∞ and ‖f‖L∞ = a. Thus is this case, at least, the L∞ norm is the limit
of the Lp norms.

With suitable assumptions, one can generalize this statement.

Proposition 1: L∞ norm

Suppose that µ(Ω) < ∞ and f ∈ ∩p∈NLp with supp‖f‖Lp < ∞, we have that
‖f‖L∞ = limp→∞‖f‖Lp .

Proof. See Exercise 12.4.

Completeness

Once one has a vector space with a norm structure, we immediately get a metric struc-
ture, which in turn generates a topological structure in the usual manner. In particular,
we say that a sequence of functions fn ∈ Lp converges to a limit f ∈ Lp if‖fn − f‖Lp → 0
as n→∞. We refer to this type of convergence as convergence in Lp (or, especially in
functional analysis, strong convergence).

To prove statements about the Lp spaces (e.g. to show that ‖·‖Lp is a norm), one
heavily relies on a few inequalities.

Proposition 2: Important Inequalities

- (Hölder inequality)
Let p, q ∈ [1,∞] with 1/p + 1/q = 1. Then, for all measurable real-valued
functions f and g,

‖fg‖L1 ≤‖f‖Lp‖g‖Lq .

- (Minkowski inequality)
Let p ∈ [1,∞] and f, g ∈ Lp. Then f + g ∈ Lp and

‖f + g‖Lp ≤‖f‖Lp +‖g‖Lp .
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Remark. Usually, the main idea to prove Hölder’s inequality is to use Young’s inequality
for products. One can then use Hölder’s inequality to prove the Minkowski inequality,
which is the triangle inequality for Lp, 1 ≤ p ≤ ∞.

The proofs of Hölder’s and Minkowski’s inequality both ultimately relied on con-
vexity of various real-valued functions. One way to emphasize this, is to deduce both
inequalities from Jensen’s inequality.

Proof of Hölder using Jensen. Recall Jensen’s inequality. Let (Ω, ν) be a probability
space, i.e. ν(Ω) = 1. If h is a real valued function that is ν-summable, and if φ is a
convex function on the real line, then:

φ

(∫
Ω
hdµ

)
≤
∫

Ω
φ ◦ hdµ.

In the probability setting, this is concisely states as φ(E[X]) ≤ E[φ(X)], where X is a
ν-summable random variable. In particular, this holds for φ(x) = xp for p ≥ 1.

Let us now prove Hölder’s inequality. Let µ be any measure, and ν be the distribution
whose density w.r.t. µ is proportional to gq, i.e.

dν =
gq∫
gqdµ

dµ.

Letting h = fg1−q, we obtain∫
fgdµ =

(∫
gqdµ

)∫
fg1−q︸ ︷︷ ︸

h

gq∫
gqdµ

dµ︸ ︷︷ ︸
dν

≤
(∫

gqdµ

)(∫
hpdν

)1/p

=

(∫
gqdµ

)(∫
f qgp(1−q)

gq∫
gqdµ

dµ

)1/p

=

(∫
gqdµ

)(∫
fp∫
gqdµ

dµ

)1/p

=

(∫
gqdµ

)1/q(∫
fpdµ

)1/p

.

To go from the third to the fourth line, we used that 1
p+ 1

q = 1 and hence p(1−q)+q = 0.

In the last line, we used 1
p + 1

q = 1 once more.

An important corollary of Hölder’s inequality is that for p = q = 2, we obtain the
Cauchy–Schwarz inequality ∣∣∣∣∫

Ω
fgdµ

∣∣∣∣ ≤‖f‖L2‖g‖L2 .

The main result of the section on Lp spaces is the following.

Theorem 3: Fischer–Riesz

The spaces Lp, 1 ≤ p ≤ ∞, are Banach spaces.
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The previous remark on the Cauchy–Schwarz inequality actually hints at the fact
that the space L2 is even a Hilbert space, i.e. it is a vector space equipped with an inner
product that is also complete (with respect to the metric induced by the inner product).
The inner product in this case is given by

〈f, g〉L2 =

∫
Ω
fgdµ.

Linear functionals

Given an exponent 1 ≤ p ≤ ∞, define the conjugate q by the formula 1
p + 1

q = 1. From
Hölder’s inequality, we see that for any g ∈ Lq, the function λg : Lp → R defined by

λg(f) :=

∫
Ω
fgdµ

is well defined on Lp; the functional is also clearly linear. Furthermore, Hölder’s inequal-
ity also tells us that this functional is continuous. This stems from the fact that linear
operators are continuous if they are bounded. Hence, every fuction g ∈ Lq induces a
linear functional in (Lp)? by λg. A deep fact about Lp spaces is that, in most cases,
the converse is true as well. That is, every element of (Lp)? is of the form λg for some
g ∈ Lq.

Theorem 4: Dual of Lp

Let 1 ≤ p < ∞ and let q be its conjugate, i.e. 1
p + 1

q = 1. Assume that µ is
σ-finite. Then every λ ∈ (Lp)? has the form λ = λg for some g ∈ Lq, i.e. we have
(Lp)? = {λg : g ∈ Lq}. In that sense, one can identify the dual space of Lp with
Lq.

This result should be compared with the Radon–Nikodym Theorem from Exercise
Class 10. Both theorems start with an abstract function (a measure µ : P(Ω)→ R and
a linear functional λ : Lp → R respectively), and create a function out of it with which
it can be identified. One can indeed show, that both theorems are essentially equivalent.

Sources
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