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Exercise Class 13

The Fundamental Theorem of Calculus for
Lebesgue Integration

Introduction

We recall the Fundamental Theorem of Calculus.

Theorem 1: Fundamental Theorem of Calculus

Part I of the theorem says that if f is continuous on [a, b], then the function
defined by

F (x) =

∫ x

a
f(t)dt

is differentiable, and F ′(x) = f(x) for all x ∈ [a, b]. In particular, F ∈ C1([a, b]).
Part II of the Theorem states that given any F ∈ C1([a, b]), we have that∫ b

a
F ′(x)dx = F (b)− F (a).

We now explore the question of the extent to which this theorem continues to hold
when the differentiability or itengrability conditions on F, F ′, or f are relaxed.. To
generalize the first part, we may ask ourselves the follwing question:

- Suppose f is integrable on [a, b] and F is its indefinite integral F (x) =
∫ x
a f(t)dt.

Does this imply that F is differentiable and that F ′ = f?

The second part of the theorem is usually formulated in a slightly more general way.
Namely, if a real function F on [a, b] admits a derivative f(x) at every point x ∈ [a, b]
and if this derivative f is (Riemann-)integrable, then

F (b)− F (a) =

∫ b

a
f(t)dt.

The question arises as to when F admits such a derivative. Clearly, F ∈ C1 is a
sufficient condition, however, it is not necessary. What happens if F is simply differen-
tiable, or just differentiable a.e. with a Lebesgue integrable derivative f? Hence we ask
ourselves

- What conditions on a function F on [a, b] guarantee that F ′(x) exists (for a.e. x),
that this function is integrable, and that moreover

F (b)− F (a) =

∫ b

a
F ′(x)dx ?

The First Fundamental Theorem

We briefly discuss the first problem. If f is given on [a, b] and integrable on that interval,
we let

F (x) =

∫ x

a
f(t)dt.
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ETH Zürich
Maran Mohanarangan

To deal with F ′(x), we recall the definition of the derivative as

lim
h→0

F (x+ h)− F (x)

h
.

We note that this quotient takes the form

1

h

∫ x+h

x
f(t)dt =

1

L(I)

∫
I
f(t)dt,

where we write I for the interval (x, x+ h) and L for the Lebesgue measure.
We observe that this expression is the “average” value of f over I, and that in

the limit L(I) → 0 (i.e. h → 0), we might expect that these averages tend to f(x).
Reformulating the question slightly (and in higher dimensions), we may ask whether

lim
L(B)→0
x∈B

1

L(B)

∫
B
f(t)dt = f(x), for a.e. x?

The limit is taken as the volume of open balls B containing x goes to 0.
By these observations, it becomes apparent that the answer to our original question

is closely related to Lebesgue’s differentiation theorem.

Theorem 2: Lebesgue Differentiation Theorem

Let f ∈ L1
loc(Rn). Then for µ-a.e. x ∈ Rn it holds

lim
r→0

1

L(B(x, r))

∫
B(x,r)

fdL = f(x).

The Vitali covering lemma is vital to the proof of this theorem; its role lies in proving
the estimate for the Hardy–Littlewood maximal function.

The Second Fundamental Theorem

We now take up the second question. We already know that differentiability a.e. with
Lebesgue integrable derivative is not enough. The Cantor function1 C on [0, 1] is con-
tinuous, non-decreasing, differentiable with derivative 0 almost everyhwere, however,
C(0) = 0 and C(1) = 1 and thus∫ 1

0
C ′(x)dx = 0 6= 1 = C(1)− C(0).

In view of this counterexample, we see that we need to add additional hypothesis to the
fuction F before we can recover the second fundamental theorem.

Definition 3: Absolute Continuity

A function F is called absolutely continuous if for every ε > 0 there exists δ > 0
such that for any finite collection of disjoint intervals (ak, bk), k = 1, 2, . . . , n, we
have

n∑
k=1

(bk − ak) < δ =⇒
n∑

k=1

∣∣F (bk)− F (ak)
∣∣ < ε.

1See Exercise Class 4
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For a compact interval, we have that

F Lipschitz cont. =⇒ F absolutely cont. =⇒ F uniformly cont..

For absolutely continuous functions, we can recover the second fundamental theorem
of calculus.

Theorem 4: Second Fundamental Theorem

Suppose F is absolutely continuous on [a, b]. Then F ′ exists almost everywhere
and is summable. Moreover,

F (x)− F (a) =

∫ x

a
F ′(t)dt, ∀a ≤ x ≤ b.

Conversely, if f is summable on [a, b], then there exists an absolutely continuous
function F such that F ′(x) = f(x) almost everywhere, and in fact, we may take
F (x) =

∫ x
a f(t)dt.

This theorem is extremely important in Lebesgue integration theory and there are
several ways of proving it. One of the better known proofs relies on the non-trivial
Vitali Covering Lemma. One particular approach can be seen in [Rud87] which treats
the subject by differentiating measures and thus makes use of the Radon–Nikodym
theorem (somewhat similar to the approach in the lecture).

We will briefly hint at how the Radon–Nikodym theorem implies the Fundamental
Theorem. Recall that we first defined the notion of absolute continuity for measures2.
Absolute continuity for functions is closely related to that.

Proposition 5: Relation between the two notions of absolute continuity

Let ΛF denote the Lebesgue–Stieltjes measure corresponding to F . Then the
following are equivalent:

1. ΛF is absolutely continuous with respect to the Lebesgue measure L.

2. F is absolutely continuous.

Now recall that if ΛF � L, the Radon–Nikodym theorem gives us a function f ∈ L1

— the so-called Radon–Nikodym derivative — such that

ΛF (A) =

∫
A
fdL.

If A is an interval (a, b) in R, then ΛF (A) evaluates to F (b) − F (a). So the Radon–
Nikodym theorem yields the second fundamental theorem of calculus, and the Radon–
Nikodym derivative turns out to be the classical derivative3.

Note moreover, that we are being non-rigorous here. Most notably, we disregard the
fact that we only defined the Lebesgue–Stieltjes measure for non-decreasing functions
in this lecture. Nonetheless, we stated the results in a slightly more general fashion.

2See Exercise Class 10.
3Of course, it isn’t pure coincidence that this function is called derivative.
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