FS 2021 ETH Zürich

Serie 7

Hinweis: Mit einem Stern (*) gekennzeichnete Aufgaben sind besonders schwierig. Aufgaben mit einem (A) kennzeichnen besonders abstrakte Aufgaben (siehe Aufgabe 6).

1. (a) (Verklebungslemma) Seien X und Y topologische Räume und sei $X = A \cup B$ eine Überdeckung von X mit abgeschlossenen Mengen $A, B \subseteq X$. Weiter seien $f \colon A \to Y$ und $g \colon B \to Y$ stetige Abbildungen mit f(x) = g(x) für alle $x \in A \cap B$ und sei $h \colon X \to Y$ definiert durch

$$h(x) = \begin{cases} f(x), & \text{falls } x \in A, \\ g(x), & \text{falls } x \in B. \end{cases}$$

Zeigen Sie, dass h eine wohldefinierte stetige Abbildung ist.

Bemerkung: Diese Aussage lässt sich verallgemeinern für eine Überdeckung von X mit endlich vielen abgeschlossenen Mengen, aber auch für eine beliebige Überdeckung von X mit offenen Mengen.

- (b) Sei X ein topologischer Raum und seien γ_0 und γ_1 zwei Wege in X mit $\gamma_0(1) = \gamma_1(0)$. Zeigen Sie, dass dann der Weg $\gamma_0 \gamma_1$ stetig ist.
- (c) Sei X ein topologischer Raum und seien $x, y, z \in X$. Seien γ_0 und γ_0' zwei Wege in X von x nach y und γ_1 und γ_1' zwei Wege in X von y nach z. Zeigen Sie, dass falls $\gamma_0 \simeq \gamma_0'$ und $\gamma_1 \simeq \gamma_1'$ rel Endpunkte gilt, so gilt auch $\gamma_0 \gamma_1 \simeq \gamma_0' \gamma_1'$ rel Endpunkte.
- 2. Beweisen Sie das Lemma über die Funktorialität der Fundamentalgruppe aus der Vorlesung.
- 3. Sei $A \subseteq X$ ein Retrakt mit Retraktion $\rho \colon X \to A$ und bezeichne $i \colon A \to X$ die Inklusion. Sei $a \in A \subseteq X$.
 - (a) Zeigen Sie, dass $i_*: \pi_1(A, a) \to \pi_1(X, a)$ injektiv ist und $\rho_*: \pi_1(X, a) \to \pi_1(A, a)$ surjektiv ist.
 - (b) Angenommen ρ ist ein starker Deformationsretrakt. Zeigen Sie, dass dann i_* und ρ_* zueinder inverse Gruppenisomorphismen sind.
- 4. (a) Seien X und Y topologische Räume und $x_0 \in X$, $y_0 \in Y$. Finden Sie einen (kanonischen) Gruppenisomorphismus zwischen $\pi_1(X \times Y, (x_0, y_0))$ und $\pi_1(X, x_0) \times \pi_1(Y, y_0)$.
 - (b) Sei $X = \underbrace{S^1 \times \cdots \times S^1}_n$ für ein $n \in \mathbb{N}$ und $x_0 \in X$ beliebig. Bestimmen Sie den Isomorphietyp von $\pi_1(X, x_0)$.
- 5. Sei \mathcal{E} die Kategorie mit Objekten den Euklidischen Räumen \mathbb{R}^n für $n \in \mathbb{N}$ und Morphismen $\operatorname{Mor}(\mathbb{R}^n, \mathbb{R}^m)$ den glatten Abbildungen von \mathbb{R}^n nach \mathbb{R}^m , die den Ursprung auf den Ursprung senden, mit der üblichen Verknüpfung von Funktionen. Zeigen Sie, dass die Zuordnung \mathcal{F} , die jedem \mathbb{R}^n sich selbst und jedem $f \in \operatorname{Mor}(\mathbb{R}^n, \mathbb{R}^m)$ das Differential Df(0) von f im Ursprung zuordnet, einen kovarianter Funktor von \mathcal{E} nach \mathcal{E} definiert.
- 6. Sei \mathcal{U} gegeben durch folgendes Tripel von Daten:

(*, A)

• Ob(*U*) ist die Klasse der kleinen Kategorien, d.h.

 $Ob(\mathcal{U}) = \{ \mathcal{C} \mid \mathcal{C} \text{ ist eine Kategorie, für welche } Ob(\mathcal{C}) \text{ eine Menge ist} \},$

- $Mor(\mathcal{C}, \mathcal{D})$ ist die Menge der kovarianten Funktoren von \mathcal{C} nach \mathcal{D} ,
- $\operatorname{Mor}(\mathcal{C}, \mathcal{D}) \times \operatorname{Mor}(\mathcal{D}, \mathcal{E}) \to \operatorname{Mor}(\mathcal{C}, \mathcal{E})$ ist durch Nacheinanderausführen von Funktoren gegeben.

Zeigen Sie, dass \mathcal{U} eine Kategorie bildet.

7. Finden Sie eine stetige Surjektion $S^1 \to S^2$. Können Sie für alle $m, n \in \mathbb{N}$ eine stetige Surjektion $S^m \to S^n$ finden?