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Try to solve the questions before looking to the answers. Every
item must be proved rigorously. Starred problems are harder.

Problem 1
Let G be a graph. Prove that the dimension of the nullspace
of the Laplacian matrix of G counts the number of connected
components of G.

Solution 1
Suppose that G has K connected components. Without loss of
generality, assume that the vertices are ordered according to the
number of connected components they belong to. In such case,
the Laplacian matrix of G has a block diagonal form with blocks
L1,… , LK where each block i is the Laplacian matrix corresponding
the connected component i. Since each component is connected,
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every block has exactly one zero eigenvalue because the second
smallest eigenvalue is non-zero (Theorem 6.6 from lecture notes).
As in all block diagonal matrices, the eigenvalues of the entire ma-
trix is the union of the eigenvalues of the block diagonal matrices.
It follows that the nullspace of L(G) is of dimension K because it
contains exactly K zero eigenvalues.

Problem 2
Let G be a graph with Laplacian matrix L(G) ∈ ℝ

n×n whose eigen-
values are {0, �2,… , �n}. The complement graph associated with
graph G, namely Gc , is de�ned as the graph with same vertices as
G in which two vertices are connected if and only they are not
connected by an edge in G.

(a) Prove that the eigenvalues of L(Gc
) are {0, n − �n,… , n − �2}

(b) If n is an eigenvalue of L(G), then Gc is disconnected.

(c) If n is an eigenvalue of L(G), then the number of zero eigen-
values of L(G) is exactly one.

Solution 2
(a) Clearly 0 is an eigenvalue of L(Gc

). For i ≥ 2, let vi be the
eigenvector corresponding to the eigenvalue �i and observe
that all vi are orthogonal to (1,… , 1). Moreover, by de�nition
of complement graph we have L(G) + L(Gc

) = nIn − J where
J is all ones matrix. Then we write

L(G
c
)vi = (nIn − J − L(G))vi = nvi − �ivi = (n − �i)vi.

It is easy to see that vi is also an eigenvector of L(Gc
) asso-

ciated with the eigenvalue (n − �i).
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(b) If n is an eigenvalue of the Laplacian of G, then the sec-
ond smallest eigenvalue of L(Gc

) is zero by letter "a". It
follows from Theorem 6.6 of the lecture notes that Gc is
disconnected.

(c) If n is an eigenvalue of the Laplacian of G, then Gc is discon-
nected by letter "b". The graph induced by the union of G
and Gc is the complete graph with n vertices (by de�nition
of complement graph), we claim that G must be connected.
The proof follows from the claim by applying Theorem 6.6
from the lecture notes to conclude that �2(G) > 0. It remains
to prove the claim. For two arbitrary vertices x and y in G

we have to prove that there exits a path between them. If
x and y lie on two di�erent connected components of Gc,
then exists an edge e that connects x to y (length one path).
On the other hand, if x and y lie on the same connected
component of Gc, choose z an arbitrary vertex of Gc that
lies on a di�erent connected component (such component
must exist because Gc is not connected). By the same reason
as before there exist two edges, namely e1 that connects x
to z and e2 that connects y to z. Therefore the path {e1, e2}
connects x to y. Since x and y are arbitrary vertices in G,
we conclude that G is a connected graph.

(Observe that in general, the union of two disconnected
graphs does not necessarily need to be connected)

Problem 3
Prove that a collection of vectors {�1,… , �m} in ℂ

d is a frame if
and only if its spans the entire space.
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Solution 3
If the collection is a frame but it does not span the entire space,
then there exist an non-zero vector a ∈ ℂ

d that is orthogonal to
all �i. By de�nition of frame, we get that

A‖a‖
2

2
≤

m

∑

i=1

|⟨�i, a⟩|
2
= 0.

This implies that A = 0, it contradicts the fact that {�1,… , �m} is
a frame. Now assume that {�1,… , �m} spans the entire space. We
may assume that all �i are non-zero. Clearly, B ∶= ∑

m

i=1
‖�i‖

2

2
is an

upper bound. Consider the continuous map Ψ that maps x ∈ ℂ
d

into Ψ(x) = ∑
m

i=1
|⟨�i, x⟩|

2. Since the unit ball B1 in ℂ
d is compact

because the space is �nite dimensional, by the continuity of the
map, there exists an unit vector y that satis�es the in�mum below

A ∶=

m

∑

i=1

|⟨y, �i⟩|
2
= inf

x∈B1

Ψ(x).

If A = 0, then y is orthogonal to all �i contradicting the fact that
the collection {�1,… , �m} spans the entire space. So A > 0 and
therefore {�1,… , �m} is indeed a frame with frame bounds A and
B.
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