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Try to solve the questions before looking to the answers. Every
item must be proved rigorously. Starred problems are harder.

Problem 1
Let X = ℝ2 and Y = {0, 1}. Let  be the set of classi�ers cor-
responding to all concentric circles in the plane centered at the
origin, precisely

fr(x) ∶=

{
1, ‖x‖ ≤ r
0, otherwise

Prove that  is PAC-learnable and give an upper bound to the
sample complexity.
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Solution 1
Let f ∗ be the unknown classi�er that we want to learn and let
C denote the circle induced by f ∗. A simple learning algorithm
is su�cient here: Given the sample S, the algorithm returns the
tightest circle Ĉ containing all the samples with label 1. To analyse
the risk, we de�ne s∗ ∶= inf{s ∶ ℙ(s ≤ ‖x‖2 ≤ r) < "} and the
annulus A ∶= {x ∶ s∗ ≤ ‖x‖2 ≤ r}, so clearly ℙ(x ∈ A) ≥ ".
Observe that the error occurs when no sample falls in the annulus
A. We now proceed as in homework 7,

ℙ(R̂(f ) > ") = ℙ(Ĉ ∩ A = ∅) = ℙ(∀i ∈ [n], Xi ∉ A) ≤ (1 − ")n.

It follows for n = ⌈1" log
1
� ⌉, the probability that the risk is larger

than " is at most � , so the class is PAC-learnable with sample
complexity at most ⌈1" log

1
� ⌉.

Problem 2
Assume the data is linearly separable with the margin  . Let f̂S be
the classi�er returned by the Perceptron algorithm after training
over the sample S (drawn from some unknown distribution) with
size n and running through it until the algorithm makes a pass
over the sample with no mistakes. Give a bound for the expected
risk via the Leave-One-Out argument.
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Solution 2
Let S′

be a sample of size n + 1. For notation simplicity we refer
to the Perceptron algorithm as P . Consider a point x ∈ S′

. If
f̂S′/{x} missclassi�es x , then x is a support vector. Since we run
the Perceptron algorithm until we get no mistakes on the sample,
the classi�er will be the same when classifying any point in the
Leave One Out analysis. Observe that it is not the case if we pass
only one time, i.e, if we pass only one time the order of the points
matters. We now apply Theorem 15.3 from the lecture notes to
obtain

LOO(S
′
) =

∑n
i=1 f̂i(Xi) ≠ f (Xi)

n + 1
≤

r2

 2(n + 1)
,

where r is the maximum ‖x‖ (radius) of the sample S′
. By Theorem

14.1 from the lecture notes we get

EX1,…,XnR(P (S)) = EX1,…,Xn+1LOO(P (S
′
)) ≤

EX1…,Xn+1r2

 2(n + 1)
.

Problem 3
Let F (t) ∶= ℙ(X ≤ t) be the cumulative distribution function of a
random variable X and let F̂n be the empirical cumulative distribu-
tion function with respect to an i.i.d sample X1,… , Xn, i.e, consider
i.i.d random variables X1,… , Xn with the same distribution of X ,
the empirical cumulative distribution with respect to such sample
is given by

F̂n(t) ∶=
∑n

i=1 1Xi≤t

n
.

(a) Prove that F̂n converges uniformly to F in probability. That
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is,
sup
t∈R

|F̂n(t) − F (t)|
P
→ 0.

(Hint: Apply the uniform law of large numbers together
with the bound for the shatter function of intervals)

(b) * Prove that F̂n converges uniformly to F almost surely. (Hint:
Use Borell-Cantelli lemma)

Solution 3
(a) Let  denote the collection of events of the type x ≤ t for

t ∈ ℝ. By Theorem 17.2 in the lecture notes we know that

ℙ(sup
t∈ℝ

|F̂n(t) − F (t)| ≥ ") ≤ 8(n)e−n"
2/32.

We also know that (n) ≤ n + 1 (lecture notes), therefore it
is easy to see that ℙ(supt∈ℝ |F̂n(t) − F (t)| ≥ ") goes to zero as
n goes to in�nity.

(b) By letter "a" we obtain that

ℙ(sup
t∈ℝ

|F̂n(t) − F (t)| ≥ ") ≤ 8(n)e−n"
2/32 ≤ 8e−n"

2/64,

where in the last inequality we used a crude bound: For

su�cient large n, we have that elog(n+1) ≤ e n"
2

64 . Motivated by
the last observation we de�ne n∗ to be the smallest n such
that log(n + 1) ≤ n"2

64 . Now we have that

∞

∑
n=1

ℙ(sup
t∈ℝ

|F̂n(t)−F (t)| ≥ ") ≤
n∗

∑
n=1

8(n+1)e−n"
2/32+

∞

∑
n=n∗

8e−n"
2/64.

The �rst term in the right hand side is �nite as the sum runs
over �nite terms. The second term in the right hand side
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is also �nite because 8e−n"2/64 is integrable in the interval
(n∗,∞). We conclude that ∑∞

n=1 ℙ(supt∈ℝ |F̂n(t) − F (t)| ≥ ") is
�nite. By Borell-Cantelli lemma, we get convergence almost
surely.

The result above (letter "b") is known as the classical Glivenko-
Cantelli theorem. It illustrates a deep connection between empiri-
cal process theory and statistical learning theory. It also reveals
the power of concentration inequalities, once we prove concen-
tration with exponential decay, we can use crude bounds to get
precise asymptotic results.
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