Mathematics of Machine Learning Homework 10 - Solutions

Instructors: Afonso S. Bandeira & Nikita Zhivotovskiy Course Coordinator: Pedro Abdalla Teixeira

May 14, 2021

Try to solve the questions before looking to the answers. Every item must be proved rigorously. Starred problems are harder.

Problem 1

Consider i.i.d standard Gaussian random variable g_1, \ldots, g_n and a unit vector $a = (a_1, \ldots, a_n)$.

- (a) Use the rotation invariance property of the Gaussian random variable to derive a concentration inequality for the sum ∑_{i=1}ⁿ a_ig_i.
- (b) Use the Chernoff Method to derive a similar concentration inequality for the sum $\sum_{i=1}^{n} a_i g_i$. Compare with the inequality in letter "a".

Solution 1

(a) Observe that, by the invariance property of the Gaussian distribution, ∑ⁿ_{i=1} a_ig_i is Gaussian random variable g^{*} with mean zero and variance one. Therefore by a standard estimate for the tail of a Gaussian random variable we have

$$\mathbb{P}(|g^*| \ge t) \le \min(1, \sqrt{\frac{2}{\pi}} \frac{1}{t})e^{-t^2/2}.$$

(b) By independence, we can write

$$\mathbb{E}e^{\lambda\sum_{i=1}^{n}a_{i}g_{i}}=\prod_{i=1}^{n}\mathbb{E}^{\lambda a_{i}g_{i}}=\prod_{i=1}^{n}e^{\lambda^{2}a_{i}^{2}/2}=e^{\lambda^{2}/2}.$$

By the Chernoff method, we have

$$\mathbb{P}(\sum_{i=1}^n g_i a_i \geq t) \leq \inf_{\lambda \geq 0} e^{-\lambda t} e^{\lambda^2/2}.$$

For $\lambda = t$, we get $\mathbb{P}(\sum_{i=1}^{n} g_i a_i \ge t) \le e^{-t^2/2}$. Finally by union bound, $\mathbb{P}(|\sum_{i=1}^{n} g_i a_i| \ge t) \le 2e^{-t^2/2}$. We observe that both concentration inequalities have similar tail decay, the first inequality, provides a sharper estimate but it uses a crucial property exclusive for Gaussian distribution, while the second concentration inequality only requires a bound in the moment generating function, observe that such bound can be satisfied for other distributions (Check it!).

Problem 2

Show that the Sauer-Shelah lemma is tight, i.e, give an example of a family of events \mathcal{A} with VC-dimension equal to d such that the shatter function is $S_{\mathcal{A}}(n) = \sum_{i=1}^{d} {n \choose i}$.

Solution 2

Consider the family of binary sequences with at most *d* ones. Observe that for the growth function is $\sum_{j=1}^{d} {n \choose j}$, to see this observe that for every sequence of *n* "bits" (zeros and ones) with $i \leq d$ ones we have ${n \choose i}$ possibilities. For every $i \in [d]$ the sequences are different, so we have exactly $\sum_{i=0}^{d} {n \choose i}$. The shatter function $S(d) = \sum_{i=0}^{d} {d \choose i} = 2^d$, so such family has VC-dimension at least *d*. Finally, $S(d + 1) = \sum_{i=0}^{d} {d+1 \choose i} < 2^{d+1}$, therefore the VC-dimension is exactly *d*.

Problem 3

Compute the VC-dimension of the following classes

- (a) Indicator function of sets of the form $[a, b] \cup [c, d]$ in \mathbb{R} .
- (b) Indicator function of all circles in \mathbb{R}^2 .
- (c) All sets of the form $\{x \in \mathbb{R} : \sin(xt) \ge 0\}$ for all t > 0.

Solution 3

- (a) We claim that the VC-dimension is four. Pick four points in the real line, namely $x_1 < x_2 < x_3 < x_4$. All the procedure will be with respect to this order. We assume a < b < c < d. We choose *a* to be equal to the first x_i with label 1 (if none exits just choose an $a > x_4$) and b to be strictly less than the first x_i with label 0 (if none exits choose an $b > x_4$), we repeat the process for *c* and *d*. It is easy to check that $\{x_1, \ldots, x_4\}$ is shattered by such family of intervals. This proves that the VC-dimension of the class is at least 4. Now consider five points $x_1 < x_2 < x_3 < x_4 < x_5$ with alternating labels, i.e., $x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 1$. To shatter x_1, x_2, x_3 we need two intervals, because no single interval can contain x_1 and x_3 without containing x_2 . But the second interval cannot contain x_4 and we need another interval to contain x_5 , i.e., we need at least three closed intervals to shatter $\{x_1, ..., x_5\}$. Since this set of five points is arbitrary we can conclude that no set with five points can be shattered by the union of two closed intervals.
- (b) It is easy to check that three points $\{x_1, x_2, x_3\}$ aligned in the *x*-axis (say), $x_1 = (-1, 0)$, $x_2 = (0, 0)$ and $x_3 = (1, 0)$ can be shattered by circles in \mathbb{R}^2 . So the VC-dimension is at least three. Now we analyse four generic points $\{x_1, \dots, x_4\}$. Let *K* be the convex hull of such points, if one of the points do not lie in the boundary of *K* then the set cannot be shattered by the circles, indeed if the point in the interior of *K* has label 0 while the boundary points have label 1, then the circle must contain the interior point. Now we assume that all points x_i lie on the boundary of *K*. Without loss of generality, we assume that $x_1, \dots x_4$ are oriented in a clock-wise order and

the distance between the opposite points x_1 and x_3 is smaller than the distance between the opposite points x_2 and x_4 . If x_2 and x_4 have label one while x_1 and x_3 have label zero, there is no circle passing through x_2 and x_4 and not passing through x_1 and x_3 . To see this, let *H* be a hyperplane induced by the line passing through x_1 and x_3 . If the center of the circle *O* lies in the same region as x_2 , then the circle contains either x_1 or x_3 . The same holds if *O* lies in the region of x_4 . In other words the circle must contain either x_1 or x_3 because the distance between x_2 and x_4 is larger than the distance between x_1 and x_3 . We conclude that the VC-dimension is exactly three.

(c) We now show that the family $\{2^{-j} : j \in [m]\}$ can be shattered by the family of sines. It will imply that the VCdimension of the class is infinite. We will work with labels ± 1 for simplicity. Consider $\{x_1, \ldots, x_m\}$ with labels $\{y_1, \ldots, y_m\}$. Now we choose $t := \pi(1 + \sum_{i=1}^m 2^i z_i)$ where $z_i = \frac{1-y_i}{2}$. Observe that

$$tx_{j} = t2^{-j} = \pi(2^{-j} + \sum_{i=1}^{m} 2^{i-j}z_{i}) = \pi(2^{-j} + \sum_{i=1}^{j-1} 2^{i-j}z_{i} + z_{j} + \sum_{i=1}^{m-j} 2^{i}z_{i}).$$

The latter is a multiple of 2π , so it can be dropped because of the periodicity of the sine function. The remaining term can be upper bounded by $\pi(\sum_{i=1}^{j} 2^{-i} + z_i) < \pi(1 + z_i)$. Similarly it can be (strictly) lower bounded by πz_i . So if $y_j = 1$, the sign of the sine is positive, otherwise the sign is negative. We correctly classify all points x_j , $j \in [m]$. Since *m* is arbitrary we can conclude that the class can shatter sets of arbitrary sizes. By definition it has infinite VC-dimension.