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Solutions to problem set 2

1. Let H, H' be Abelian groups with free resolutions ' — H, I’ — H’. By the free resolution
lemma, we can extend any given group homomorphism f : H — H' to a chain map f: F—
F'. Recall that by definition we have Tor(H,G) = H1(F®G) and Tor(H',G) = H1(F' ®G),
and so we define the action of Tor(—,G) on f by

fror = (f®id), : Hi(F' ® G) — Hi(F ® G).

This is independent of the choice of lift fv as that is unique up to chain homotopy. To see
that this makes Tor(—, G) a functor, note that idr,, = id because we can take as a lift of
id : H — H simply id of any free resolution of H. Moreover, (fg)Tor = gTorfTor, because if
]?Iifts f and g lifts g, then gf lifts g f.

The case of Ext(—, &) is analogous. (Of course, these are are just special cases of how in
general one constructs the action of derived functors on morphisms.)

2. We discuss the sequence 0 — H,(C) — H,(C ® G) — Tor(H,—1(C),G) — 0 appearing in
the universal coefficient theorem for homology. Recall that we constructed this as

0 — coker(i, ® id) = H,(C;G) = ker(ip,—1 ®id) = 0 (1)
with i, : B, — Z, the inclusion map, and then noted that
coker(i, ®1d) 2 H,(C)® G and ker(in—1 ® id) = Tor(H,-1(C), G). (2)

It is clear that a chain map ¢ : C' — C’ induces a morphism of short exact sequences between
and its counterpart for C’ (just think about how we arrived at ) Moreover, one checks
easily that under the identifications and the corresponding ones for C’, the outer maps
in this morphism of SES are ¢, : H,(C) — H,(C") and (¢)Tor-

3. (a) Naturality of the short exact sequence in the universal coefficient theorem for homology
says that the diagram

0— H,(C)®G— H,(C;G) — Tor(H,_1(C),G) —0
\Lf*@ld i/f* \L(f*)Tor
0— H,(D)®G— H,(D;G) — Tor(H,_1(D),G) —0

commutes. The outer two maps are isomorphisms because f. : H.(C) — H,(D) is an
isomorphism by assumption and by functoriality of Tor(—,G). Hence f, : H.(C;G) —
H.(D;@G) is an isomorphism by the 5-lemma.

(b) Same argument as in (a) using the universal coefficient theorem for cohomology.
4. Consider the diagram
H?(S? G) — Ext(H(5?%),G) ® Hom(H2(S?),G)

ol Joora.)-
H2(RP?;G) —> Ext(H, (RP?),G) & Hom(Hs(RP2), G)



Note that we have Ext(H;(S?),G) = 0 and Hom(H>(RP?),G) = 0 because H;(S?) = 0,
H5(RP?) = 0, and hence the map on the right vanishes for every Abelian group G. If the
splitting were natural, the map ¢* : H?(S?%; G) — H?(RP?;G) would consequently also have
to vanish for every G.

We will show, in contrast, that ¢* : H?(S?%;Zs) — H?*(RP?;Zs,) is an isomorphism. To
see this, note that ¢ : RP? — S2 is a cellular map with respect to the usual CW complex
structures of RP? (with one cell in each degree 0,1,2) and S? (with one cell in degree 0 and
one in degree 2). The map induced by ¢ on cellular chains takes the generator corresponding
to the unique 2-cell of RP? to the generator corresponding to the unique 2-cell of S? (recall
the description of this map!). Dualizing, this implies that the map induced by ¢ on the
cellular cochain complexes with coefficients in Z, looks as follows:

070 <27y <2 7y <0

KK

0<—Zo<=—0=<—7Zo<—0
In particular, the induced map H?(S?%;Zy) — H?*(RP?;Zs) is an isomorphism.
. The universal coefficient theorem for homology tells us that there is a splitting
H,(K;G) = (Hy(K)®G) @ Tor(H,—1(K),G)

for every Abelian group G. We have Hy(K) Q Z,, = Z,, and H1(K) @ Z, = Z, ® (Z3 @ Zy);
note that Zy ® Zg = Zg and Zy ® Z, = 0 for odd p (which doesn’t have to be prime for that;
in general, Z, ® Zy = 0 if ¢, ¢’ are coprime, as 1 = gm + ¢'m/ for certain m, m’ € Z, from
which it follows that 1®1 =0 in Z; ® Zy ). Moreover, Tor(Hy(K),Z,) = 0 as Hy(K) is free
and Tor(Hy(K),Z,) = Tor(Zs, Z,) = ker(Z, 2 Zy), which is Zg for p = 2 and 0 if p is odd.
Combining all that, we obtain

Ho(K;Z2) = Lo, Hi(K;Zz)=1Zo® Lz, Ha(K;Zz)=1Zo
and

Hy(K:;Z,) =17, H:i(K;Z,) =127, HyK;Z,) =0

for p odd. All other groups vanish.

From the universal coefficients theorem for cohomology, we obtain a splitting
H"(K;G) 2 Ext(H,-1(K),G) ® Hom(H,(K);G)

for every Abelian group G. We have Ext(Hy(K), G) = 0 as Hy(K) is free and Ext(H,(K); G) =
Ext(Z2, G) = G/2G, which is Zy for G =Z or G = Zy and 0 for G = Z,, with p odd. More-
over, Hom(Hy(K); G) = G, and H,(K) = Z @ Z, implies that

Z, G=1
Hom(Hy(K);G) = ( Zy © Ly, G =1
Lo, G = Z, with p odd

It follows that
HY(K;7Z)=7, HYK;Z)=17, H*K;Z)=7Zs,
HY(K;Zy) = Ly, H'(K;Zg) =17y® 2Ly, H(K;Zy) =1Ly
and
HY(K;Z,)=172, HY"K;Z,) =72, H*K;Z,)=0
for p odd. Again all other groups vanish.



6.

8.

Sk(X) splits as Sk(X) = Sk(A + B) & Si-(A + B), where the second summand is generated
by all simplices neither contained in A nor in B. Hence the quotient Sg(X)/Sx(A + B) is
isomorphic to Si-(A + B), which is free.

Let A be an abelian group. We first show that Tor(A,Q) = 0. Choose a free resolution
0— Fy 5 Fy — A — 0 and consider the sequence

05 FLo,Q0 0 B e,Q = A, Q — 0.

If i ® id is injective, we can deduce that Tor(A,Q) = 0.
In fact, for any injective map i: B — C' between abelian groups B and C, the map

B®zQ2% CezQ

is injective. Indeed, an element x of B®Q is of the form z = ) b;®q; with b; € B, ¢; = ~2,

bi
n; # 0, and the sum is finite. So we can assume that n; = n for all j and we can write
z = (X m;b;) ® L. If we now assume i ® id(z) = 0, we get

. 1

(3 (Zmﬂ%) ® E =0
and hence i(}" m;b;) = 0. Injectivity of i now yields > m;b; =0, and soz =Y m;b;® L =
0. This shows injectivity of ¢ ® id.
Remark: Together with Problem 1 from the sheet on tensor products, this shows that —®zQ
preserves short exact sequences!
In particular, Tor(H,,—1(X;Z),Q) = 0 and so the homological universal coefficients theorem
implies

H,(X;Q) = Ho(X;Z) ® Q.

For the cohomology the proof is similar. This time, one has to investigate exactness proper-

ties of hom(—, Q). Namely, the following statement will imply Ext(A,Q) = 0: Let i: B — C
be an injective map of abelian groups. Then

i*: hom(C, Q) — hom(B, Q)
is surjective.

To prove this, let us view B as a subset of C viai. Let ¢ € hom(B, Q). We need to show that
¢ extends to p: C — Q. Let B C " C C be the maximal subgroup such that there exists
an extension ¢': ¢/ — Q. (Use Zorn’s lemma to prove existence.) Suppose by contradiction
that C” # C. Then there exists z € C\C’. Moreover, the subgroup (z) C C generated by =
satisfies (z) N C’ = {0} because Q is divisible. Hence we can put ¢(x) := ¢ for some g € Q
and extend it linearly to a map @: C' @ (x) — Q that extends ¢’. This is a contradiction to
maximality of C’. We conclude C’ = C. Surjectivity of ¢* now follows.

(a) Note that multiplication in R induces a Z-linear map m: R ®z R — R. For a €
hom(A, R) put (o) = mo (a®id) € homz(A ®z R, R). Concretely, it is given by

(a) (Z a; ® Tj) = ala))r
for finitely many a; € A and 7; € R. In fact, () is R-linear: for r € R
a) (rrZaj ®rj) = p(a (Zaj ®7’7’])
=Y alaj)rry =1y alay)r
(@) (D as@r).



This shows that ¢ is a well-defined Z-linear map
homy(A, R) — hompg(A ®z R, R).
It is straightforward to check that it is R-linear and inverse to
¥: homg(A ®z R, R) — homz(A, R), ¥(8)(a) = 8(a ® 1R)

for 5 € homg(A ®z R, R) and a € A.

Consider the coboundary operator ¢ on homy(C,, R)

J: homZ(C’j,R) — hOInz(Cj_H,R)

a+— aod,
where 0 denotes the boundary operator of C,. This is R-linear:
d(ra) = (ra)od =r(aod) =ri(a).
Similarly, the coboundary operator 0z on homg(Ce ®z R, R),

OR: hOHlR(Cj ®7z R, R) — homR(C’jH ®7z R, R)
B Bo(0®id),

is R-linear. ¢ is a cochain isomorphism because the following diagram commutes:

homZ(Cj,R) homz(Cj+1,R)

@i~ ¢l~

homg(C; ®z R, R) — %= homp(Cj4+1 @z R, R).

Let’s check that it commutes: For a € homyz(C;, R) we have
pod(a)=p(aocd) =mo(aod®id)
and

drow(la)=0r(mo(a®id)) =mo (a®id)o (0 ®id)
=mo (xod®id).



