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ETH Zürich

Solutions to problem set 2

1. Let H,H ′ be Abelian groups with free resolutions F → H, F ′ → H ′. By the free resolution

lemma, we can extend any given group homomorphism f : H → H ′ to a chain map f̃ : F →
F ′. Recall that by definition we have Tor(H,G) = H1(F ⊗G) and Tor(H ′, G) = H1(F ′⊗G),

and so we define the action of Tor(−, G) on f by

fTor := (f̃ ⊗ id)∗ : H1(F ′ ⊗G)→ H1(F ⊗G).

This is independent of the choice of lift f̃ as that is unique up to chain homotopy. To see

that this makes Tor(−, G) a functor, note that idTor = id because we can take as a lift of

id : H → H simply id of any free resolution of H. Moreover, (fg)Tor = gTorfTor, because if

f̃ lifts f and g̃ lifts g, then g̃f̃ lifts gf .

The case of Ext(−, G) is analogous. (Of course, these are are just special cases of how in

general one constructs the action of derived functors on morphisms.)

2. We discuss the sequence 0 → Hn(C) → Hn(C ⊗ G) → Tor(Hn−1(C), G) → 0 appearing in

the universal coefficient theorem for homology. Recall that we constructed this as

0→ coker(in ⊗ id)→ Hn(C;G)→ ker(in−1 ⊗ id)→ 0 (1)

with in : Bn → Zn the inclusion map, and then noted that

coker(in ⊗ id) ∼= Hn(C)⊗G and ker(in−1 ⊗ id) ∼= Tor(Hn−1(C), G). (2)

It is clear that a chain map φ : C → C ′ induces a morphism of short exact sequences between

(1) and its counterpart for C ′ (just think about how we arrived at (1)). Moreover, one checks

easily that under the identifications (2) and the corresponding ones for C ′, the outer maps

in this morphism of SES are φ∗ : Hn(C)→ Hn(C ′) and (φ∗)Tor.

3. (a) Naturality of the short exact sequence in the universal coefficient theorem for homology

says that the diagram

0 // Hn(C)⊗G
f∗⊗id��

// Hn(C;G)

f∗��

// Tor(Hn−1(C), G)

(f∗)Tor��

// 0

0 // Hn(D)⊗G // Hn(D;G) // Tor(Hn−1(D), G) // 0

commutes. The outer two maps are isomorphisms because f∗ : H∗(C) → H∗(D) is an

isomorphism by assumption and by functoriality of Tor(−, G). Hence f∗ : H∗(C;G) →
H∗(D;G) is an isomorphism by the 5-lemma.

(b) Same argument as in (a) using the universal coefficient theorem for cohomology.

4. Consider the diagram

H2(S2;G)

φ∗
��

// Ext(H1(S2), G)⊕Hom(H2(S2), G)

(φ∗)
Ext⊕(φ∗)∗��

H2(RP 2;G) // Ext(H1(RP 2), G)⊕Hom(H2(RP 2), G)
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Note that we have Ext(H1(S2), G) = 0 and Hom(H2(RP 2), G) = 0 because H1(S2) = 0,

H2(RP 2) = 0, and hence the map on the right vanishes for every Abelian group G. If the

splitting were natural, the map φ∗ : H2(S2;G)→ H2(RP 2;G) would consequently also have

to vanish for every G.

We will show, in contrast, that φ∗ : H2(S2;Z2) → H2(RP 2;Z2) is an isomorphism. To

see this, note that φ : RP 2 → S2 is a cellular map with respect to the usual CW complex

structures of RP 2 (with one cell in each degree 0, 1, 2) and S2 (with one cell in degree 0 and

one in degree 2). The map induced by φ on cellular chains takes the generator corresponding

to the unique 2-cell of RP 2 to the generator corresponding to the unique 2-cell of S2 (recall

the description of this map!). Dualizing, this implies that the map induced by φ on the

cellular cochain complexes with coefficients in Z2 looks as follows:

0 Z2
oo Z2

0oo Z2
0oo 0oo

0 Z2
oo

∼=
OO

0oo

OO

Z2
oo

∼=
OO

0oo

In particular, the induced map H2(S2;Z2)→ H2(RP 2;Z2) is an isomorphism.

5. The universal coefficient theorem for homology tells us that there is a splitting

Hn(K;G) ∼= (Hn(K)⊗G)⊕ Tor(Hn−1(K), G)

for every Abelian group G. We have H0(K)⊗ Zp = Zp and H1(K)⊗ Zp = Zp ⊕ (Z2 ⊗ Zp);
note that Z2⊗Z2 = Z2 and Z2⊗Zp = 0 for odd p (which doesn’t have to be prime for that;

in general, Zq ⊗ Zq′ = 0 if q, q′ are coprime, as 1 = qm + q′m′ for certain m,m′ ∈ Z, from

which it follows that 1⊗ 1 = 0 in Zq ⊗Zq′). Moreover, Tor(H0(K),Zp) = 0 as H0(K) is free

and Tor(H1(K),Zp) = Tor(Z2,Zp) = ker(Zp
2−→ Zp), which is Z2 for p = 2 and 0 if p is odd.

Combining all that, we obtain

H0(K;Z2) = Z2, H1(K;Z2) = Z2 ⊕ Z2, H2(K;Z2) = Z2

and

H0(K;Zp) = Zp, H1(K;Zp) = Zp, H2(K;Zp) = 0

for p odd. All other groups vanish.

From the universal coefficients theorem for cohomology, we obtain a splitting

Hn(K;G) ∼= Ext(Hn−1(K), G)⊕Hom(Hn(K);G)

for every Abelian groupG. We have Ext(H0(K), G) = 0 asH0(K) is free and Ext(H1(K);G) =

Ext(Z2, G) ∼= G/2G, which is Z2 for G = Z or G = Z2 and 0 for G = Zp with p odd. More-

over, Hom(H0(K);G) = G, and H1(K) = Z⊕ Z2 implies that

Hom(H1(K);G) =


Z, G = Z
Z2 ⊕ Z2, G = Z2

Zp, G = Zp with p odd

It follows that

H0(K;Z) = Z, H1(K;Z) = Z, H2(K;Z) = Z2,

H0(K;Z2) = Z2, H1(K;Z2) = Z2 ⊕ Z2, H2(K;Z2) = Z2

and

H0(K;Zp) = Zp, H1(K;Zp) = Zp, H2(K;Zp) = 0

for p odd. Again all other groups vanish.
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6. Sk(X) splits as Sk(X) = Sk(A+B)⊕ S⊥k (A+B), where the second summand is generated

by all simplices neither contained in A nor in B. Hence the quotient Sk(X)/Sk(A + B) is

isomorphic to S⊥k (A+B), which is free.

7. Let A be an abelian group. We first show that Tor(A,Q) = 0. Choose a free resolution

0→ F1
i−→ F0 → A→ 0 and consider the sequence

0→ F1 ⊗Z Q i⊗id−−−→ F0 ⊗Z Q→ A⊗Z Q→ 0.

If i⊗ id is injective, we can deduce that Tor(A,Q) = 0.

In fact, for any injective map i : B → C between abelian groups B and C, the map

B ⊗Z Q i⊗id−−−→ C ⊗Z Q

is injective. Indeed, an element x of B⊗Q is of the form x =
∑
bj⊗qj with bj ∈ B, qj =

mj

nj
,

nj 6= 0, and the sum is finite. So we can assume that nj = n for all j and we can write

x = (
∑
mjbj)⊗ 1

n . If we now assume i⊗ id(x) = 0, we get

i
(∑

mjbj

)
⊗ 1

n
= 0

and hence i(
∑
mjbj) = 0. Injectivity of i now yields

∑
mjbj = 0, and so x =

∑
mjbj⊗ 1

n =

0. This shows injectivity of i⊗ id.

Remark: Together with Problem 1 from the sheet on tensor products, this shows that −⊗ZQ
preserves short exact sequences!

In particular, Tor(Hn−1(X;Z),Q) = 0 and so the homological universal coefficients theorem

implies

Hn(X;Q) ∼= Hn(X;Z)⊗Q.

For the cohomology the proof is similar. This time, one has to investigate exactness proper-

ties of hom(−,Q). Namely, the following statement will imply Ext(A,Q) = 0: Let i : B → C

be an injective map of abelian groups. Then

i∗ : hom(C,Q)→ hom(B,Q)

is surjective.

To prove this, let us view B as a subset of C via i. Let ϕ ∈ hom(B,Q). We need to show that

ϕ extends to ϕ̂ : C → Q. Let B ⊂ C ′ ⊂ C be the maximal subgroup such that there exists

an extension ϕ′ : C ′ → Q. (Use Zorn’s lemma to prove existence.) Suppose by contradiction

that C ′ 6= C. Then there exists x ∈ C\C ′. Moreover, the subgroup 〈x〉 ⊂ C generated by x

satisfies 〈x〉 ∩ C ′ = {0} because Q is divisible. Hence we can put ϕ̃(x) := q for some q ∈ Q
and extend it linearly to a map ϕ̃ : C ′ ⊕ 〈x〉 → Q that extends ϕ′. This is a contradiction to

maximality of C ′. We conclude C ′ = C. Surjectivity of i∗ now follows.

8. (a) Note that multiplication in R induces a Z-linear map m : R ⊗Z R → R. For α ∈
hom(A,R) put ϕ(α) = m ◦ (α⊗ id) ∈ homZ(A⊗Z R,R). Concretely, it is given by

ϕ(α)
(∑

aj ⊗ rj
)

=
∑

α(aj)rj

for finitely many aj ∈ A and rj ∈ R. In fact, ϕ(α) is R-linear: for r ∈ R

ϕ(α)
(
r
∑

aj ⊗ rj
)

= ϕ(α)
(∑

aj ⊗ rrj
)

=
∑

α(aj)rrj = r
∑

α(aj)rj

= rϕ(α)
(∑

aj ⊗ rj
)
.
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This shows that ϕ is a well-defined Z-linear map

homZ(A,R) −→ homR(A⊗Z R,R).

It is straightforward to check that it is R-linear and inverse to

ψ : homR(A⊗Z R,R)→ homZ(A,R), ψ(β)(a) = β(a⊗ 1R)

for β ∈ homR(A⊗Z R,R) and a ∈ A.

(b) Consider the coboundary operator δ on homZ(C•, R)

δ : homZ(Cj , R)→ homZ(Cj+1, R)

α 7→ α ◦ ∂,

where ∂ denotes the boundary operator of C•. This is R-linear:

δ(rα) = (rα) ◦ ∂ = r(α ◦ ∂) = rδ(α).

Similarly, the coboundary operator δR on homR(C• ⊗Z R,R),

δR : homR(Cj ⊗Z R,R)→ homR(Cj+1 ⊗Z R,R)

β 7→ β ◦ (∂ ⊗ id),

is R-linear. ϕ is a cochain isomorphism because the following diagram commutes:

homZ(Cj , R)
δ //

ϕ ∼=
��

homZ(Cj+1, R)

ϕ ∼=
��

homR(Cj ⊗Z R,R)
δR // homR(Cj+1 ⊗Z R,R).

Let’s check that it commutes: For α ∈ homZ(Cj , R) we have

ϕ ◦ δ(α) = ϕ(α ◦ δ) = m ◦ (α ◦ δ ⊗ id)

and

δR ◦ ϕ(α) = δR(m ◦ (α⊗ id)) = m ◦ (α⊗ id) ◦ (∂ ⊗ id)

= m ◦ (α ◦ ∂ ⊗ id).
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