Solutions to problem set on tensor products

- 1. Every element of $M \otimes W$ of the form $m \otimes w$ is in the image of $\mathrm{id} \otimes g$ because g is surjective; since every element of $M \otimes W$ is a sum of elements of this form, it follows that $\mathrm{id} \otimes g$ is surjective. By a similar argument one sees that $\mathrm{im}(\mathrm{id} \otimes f) \subseteq \ker(\mathrm{id} \otimes g)$.
 - To prove $\ker(\operatorname{id} \otimes g) \subseteq \operatorname{im}(\operatorname{id} \otimes f) =: I$, consider the map $\phi: M \otimes V/I \to M \otimes W$ induced by $\operatorname{id} \otimes g$, which is well-defined because $I \subseteq \ker(\operatorname{id} \otimes g)$. We now define a map $\psi: M \otimes W \to M \otimes V/I$ which is a left inverse for ϕ , i.e. such that $\psi \circ \phi = \operatorname{id}$; this implies injectivity of ϕ and hence that $\ker(\operatorname{id} \otimes g) \subseteq I$. To define ψ , consider first the map $M \times W \to M \otimes V/I$ defined as follows: It takes (m,w) to $[m \otimes v]$, where $v \in V$ is any element such that g(v) = w. This is well-defined and bilinear and hence descends to a map $\psi: M \otimes W \to M \otimes V/I$. We clearly have $\psi \circ \phi = \operatorname{id}$: That's obvious on elements of the form $[m \otimes v]$, and these generate.
- 2. In view of problem 1, it is enough to prove injectivity of $f \otimes id$. Let $j: V \to U$ be a left-inverse to $f: j \circ f = id$. Then

$$(j \otimes id) \circ (f \otimes id) = (j \circ f) \otimes id = id,$$

and hence $j \otimes \operatorname{id}$ is a left-invere to $f \otimes \operatorname{id}$. In particular, $f \otimes \operatorname{id}$ is injective.

- 3. In view of problem 1, what is left to prove is the injectivity of $\mathrm{id} \otimes f$. Freeness of M means that it has a linearly independent generating set $\{m_i\}_{i\in I}$. Note that every element of $M\otimes U$ can be written as a sum $\sum_{i\in I} m_i\otimes u_i$ and that there is a well-defined map $M\otimes U\to \bigoplus_{i\in I} U$ taking such an element to $(u_i)_{i\in I}$. It follows that $(\mathrm{id} \otimes f)(\sum m_i\otimes u_i)=\sum m_i\otimes f(u_i)=0$ implies $f(u_i)=0$ for all i, hence $u_i=0$ for all i by injectivity of f, and hence $\sum m_i\otimes u_i=0$.
- 4. Consider the short exact sequence of \mathbb{Z} -modules

$$0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \longrightarrow \mathbb{Z}/2\mathbb{Z} \to 0.$$

Tensoring with the \mathbb{Z} -module $\mathbb{Z}/2\mathbb{Z}$ yields the sequence

$$0 \to \mathbb{Z}/2\mathbb{Z} \xrightarrow{0} \mathbb{Z}/2\mathbb{Z} \xrightarrow{\cong} \mathbb{Z}/2\mathbb{Z} \to 0.$$

This is not exact at the left copy of $\mathbb{Z}/2\mathbb{Z}$ and so this is a counter-example to both 2 and 3. Note that the intial sequence does not split and $\mathbb{Z}/2\mathbb{Z}$ is not a free \mathbb{Z} -module.

- 5. See Lang, Algebra., Chapter XVI, §2, Proposition 2.7.
- 6. Apply problem 5 to $R = \mathbb{Z}$, $J = n\mathbb{Z}$ and $M = \mathbb{Z}_m$. We get

$$\mathbb{Z}_n \otimes \mathbb{Z}_m \cong \mathbb{Z}_m / (n\mathbb{Z} \cdot \mathbb{Z}_m) \cong (\mathbb{Z}/m\mathbb{Z}) / ((n\mathbb{Z} + m\mathbb{Z})/m\mathbb{Z})$$
$$\cong \mathbb{Z}/(n\mathbb{Z} + m\mathbb{Z}) \cong \mathbb{Z}/\gcd(m, n)\mathbb{Z} \cong \mathbb{Z}_d.$$

Alternatively, one can use the universal property of the tensor product.

7. We show that $m \otimes t \in M \otimes T$ vanishes for any $m \in M$ and $t \in T$. Since t is torision, there exists $r \in R$, which is not a zero-divisor and such that rt = 0. Since m is divisible by r, there exists $n \in M$ such that m = rn. We compute

$$m \otimes t = (rn) \otimes t = r(n \otimes t) = n \otimes (rt) = n \otimes 0 = 0.$$

Hence $M \otimes T = 0$.

- 8. See Lang, Algebra., Chapter XVI, Beginning of §2.
- 9. See Lang, Algebra., Chapter XVI, $\S 5,$ Corollary 5.5.