D-MATH FS 2021 Prof. E. Kowalski

Exercise sheet 3

Probabilistic Number Theory

(1) Let q be a positive integer and let χ be a Dirichlet character mod q. We denote the principal character mod q by

$$\chi_0(a) = \begin{cases} 1 & \text{if } (a,q) = 1 \\ 0 & \text{if } (a,q) > 1. \end{cases}$$

a. Let Q > q be a multiple of q. Define

$$\psi(n) = \begin{cases} \chi(n) & \text{if } (n,Q) = 1\\ 0 & \text{if } (n,Q) > 1. \end{cases}$$

We say that ψ is a character mod Q induced by χ . The character χ is sayed to be *primitive* if it is not induced by any character of modulus < q. The smallest modulus f so that χ is induced by a character mod f is called the *conductor* of χ .

In particular, it's easy to see that for every $\chi \neq \chi_0 = \chi_{0,q} \mod q$, there is a unique primitive character $\chi^* \mod f$ which induces χ and so that

$$\chi(n) = \chi^*(n)\chi_0(n) \quad \forall n.$$

Show that the following are equivalent:

- i. χ is primitive.
- ii. If d|q and d < q, then there is a c such that $c \equiv 1 \mod d$, $(c, d) = 1, \chi(c) \neq 1$.
- iii. If d|q and d < q, then for every integer a,

$$S = \sum_{\substack{n=1\\n \equiv a \bmod d}}^{q} \chi(n) = 0.$$

b. Let χ be a character mod q. Define the Gauss sum

$$\tau(\chi) = \sum_{a=1}^{q} \chi(a) e(a/q),$$

where $e(a \cdot / q)$ is the *additive character* mod q defined by $n \mapsto e^{\frac{2\pi i a n}{q}}$.

Show that if χ is primitive, then

b₁. $\chi(n)\tau(\overline{\chi}) = \sum_{a=1}^{q} \overline{\chi}(a)e(an/q).$

Hint: Start with the case (n,q) = 1 and then use iii of part a.

b₂. $|\tau(\chi)| = \sqrt{q}$.

c. Prove the *Pólya-Vinogradov inequality*: Let χ be a non-principal character mod q. Then

$$\sum_{n \le x} \chi(n) \ll \sqrt{q} \log q.$$

Hint: One way to prove it is by following the steps:

c₁. Show that it suffices to prove it when $x \leq q$;

 c_2 . Use the formula b_1 ;

- c₃. Find an upper bound for the function $\sum_{a=1}^{q} \left| \sum_{n \leq x} e(an/q) \right|$.
- (2) Let $q \ge 1$. Consider the $\phi(q) \times \phi(q)$ matrix A with entries $\chi(a)$, as χ varies over all Dirichlet character mod q and a varies in $(\mathbb{Z}/q\mathbb{Z})^{\times}$. Compute det(A). Hint: Consider $A\overline{A}^t$.
- (3) a. Show that the following is <u>false</u>:

$$\log(\tau(n)) = o\left(\frac{\log n}{\log \log n}\right),$$

as
$$n \to +\infty$$
, where $\sum_{d|n} 1$

b. Let $P(x) = \prod_{n \le x} n^{\log n}$. Show that

$$\sqrt[x]{P(x)} = e^2 x^{\log x - 2} \left(1 + O\left(\frac{(\log x)^2}{x}\right) \right).$$