D-MATH FS 2021 Prof. E. Kowalski

Exercise sheet 5

Probabilistic Number Theory

(1) Let $\zeta(s)$ be the Riemann zeta function, defined to be the series

$$\zeta(s) = \sum_{n \ge 1} \frac{1}{n^s}$$

for $\Re(s) > 1$. Prove that

a. $\sum_{k \ge 2} (\zeta(k) - 1) = 1;$ b. $\sum_{k \ge 1} (\zeta(2k) - 1)^2 = \frac{3}{4}.$

Hint: Write $\sum_{k\geq 2}(\zeta(k)-1) = \sum_{k\geq 2}\sum_{j\geq 2}\frac{1}{j^k}$ and then change the order of summing.

(2) Let T > 0 and $\sigma > 1$. Show that

a.
$$\int_0^T |\zeta(\sigma + it)|^2 dt = \zeta(2\sigma)T + O(1).$$

b. In general, for a meromorphic function f(s) on $a \le \sigma \le b$ with a finitely many poles in this strip, one defines the *Lindelöf function*

$$\mu : [a, b] \longrightarrow \mathbb{R} \cup \{\pm \infty\}$$

$$\sigma \longmapsto \inf\{c \in \mathbb{R} \cup \{\pm \infty\} : |f(\sigma + it)| \ll |t|^c \text{ as } |t| \to +\infty\}.$$

Denote by $\mu(\sigma)$ the Lindelöf function of the Riemann zeta function. Show that it satisfyies

$$\mu(\sigma) = \begin{cases} 0 & \text{if } \sigma \ge 1\\ 1/2 - \sigma & \text{if } \sigma \le 0. \end{cases}$$

Moreover, $0 \le \mu(\sigma) \le \frac{1}{2} - \frac{\sigma}{2}$ if $0 \le \sigma \le 1$. *Hint*: Use the following facts:

• $\mu(\sigma)$ is a convex function, in particular for all $a \leq \sigma \leq b$,

$$\mu(\sigma) \le \frac{b-\sigma}{b-a}\mu(a) + \frac{\sigma-a}{b-a}\mu(b).$$

• One has $\mu(\sigma) = 0$ for $\sigma > 1$.

• Use the functional equation for the Riemann zeta function

$$\zeta(1-s) = 2(2\pi)^{-s}\Gamma(s)\cos\left(\frac{\pi s}{2}\right)\zeta(s)$$

and the Stirling's formula.

c.
$$\int_{-T}^{T} \zeta(\frac{1}{2} + it) dt = 2T + O(T^{\frac{1}{4} + \varepsilon}).$$

Hint: Write $\int_{-T}^{T} \zeta(\frac{1}{2} + it) dt = \frac{1}{i} \int_{1/2 - iT}^{1/2 + iT} \zeta(s) ds$ and move the integration line to $\sigma = 2$. then use b.

(3) Show that the Riemann hypothesis is equivalent to the following statement:

$$\sum_{n \le x} \mu(n) = O(x^{\frac{1}{2} + \varepsilon})$$

for every $\varepsilon > 0$.

Hint: Use the Perron's approximation formula that we saw during the exercise class and the fact that the Riemann hypothesis implies that if $\sigma > 1/2$, then

$$\frac{1}{\zeta(\sigma+it)} \ll |t|^{\varepsilon}$$

for every $\varepsilon > 0$, as $|t| \to +\infty$.

For the other implication, use the dexplicit formula and use summation by parts to represent $1/\zeta(s)$ in terms of an integral with the partial sums.

(4) Recall that the *Mills numbers* are real numbers A > 1 with the property that $\lfloor A^{3^n} \rfloor$ is a prime number for every positive integer n. In the following assume the RH.

Show that the existence of such a number, more precisely, that given an infinite subset S of integers, and a real number c > 1 there exists a constant B = B(S, c) such that

$$\lfloor B^{c^n} \rfloor \in S \text{ for all } n \ge 1,$$

provided the set S has the property that, for some real number $0 < \theta < 1 - \frac{1}{c}$ and all large enough x, the intersection $[x, x + x^{\theta}] \cap S$ is not empty.

Hint: Since $\theta < 1$, there must be some element of the set S in all those "short" intervals. What about primes in short intervals? Use the PNT and the RH.