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FS 2021
Prof. E. Kowalski

Solutions 2
Probabilistic Number Theory

~���1 a. Suppose that n = pe11 · · · p
el
l with distinct primes p1, . . . .pl and

ei ≥ 1. Then∑
d |n

Λ(d) =
∑
pν |n

log p = e1 log p1 + · · ·+ el log pl = log n.

b. This is partial summation: We have

∑
n≤x

Λ(n)

n
=

1

x

∑
n≤x

Λ(n)−
∫ x

1

∑
n≤t

Λ(n)

(− 1

t2

)
dt

=
ψ(x)

x
+

∫ x

1

ψ(t)

t2
dt.

c. ∑
n≤x

Λ(n)

n
=
ψ(x)

x
+

∫ x

1

ψ(t)− t
t2

dt+

∫ x

1

t

t2
dt

= 1 +O

(
1

(log x)2

)
+

∫ x

1

ψ(t)− t
t2

dt+ log x.

Since ψ(t)−t
t2

= O
(

1
t(log t)2

)
, the integral in A is absolutely conver-

gent and we can write∫ x

1

ψ(t)− t
t2

dt =

∫ ∞
1

ψ(t)− t
t2

dt+O

(∫ ∞
x

1

t(log t)2
dt

)
=

∫ ∞
1

ψ(t)− t
t2

dt+O

(
1

log x

)
.

Putting these together gives∑
n≤x

Λ(n)

n
= log x+ 1 +

∫ ∞
1

ψ(t)− t
t2

dt+O

(
1

log x

)
= log x+A+O

(
1

log x

)
as claimed.
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d. By using partial summation on c.) and the facts that∫
log t

t
dt =

1

2
(log t)2 +C and

∫
1

t log t
dt = log log t+C,

we see that

∑
n≤x

Λ(n) log n

n
= (log x)

∑
n≤x

Λ(n)

n
−
∫ x

1

∑
n≤t

Λ(n)
n

t
dt

= log x

(
log x+A+O

(
1

log x

))
−
∫ x

1

log t

t
dt−

∫ x

1

A

t
dt+O

(∫ x

1

1

t log t
dt

)
= (log x)2 +A log x− 1

2
(log x)2 −A log x+O(log log x)

=
1

2
(log x)2 +O(log log x)

as required.

e. We have∑
n≤x

log n

n
=
∑
n≤x

1

n

∑
d |n

Λ(d) =
∑
d≤x

Λ(d)
∑
n≤x

n≡0 (d)

1

n
=
∑
d≤x

Λ(d)

d

∑
m≤x/d

1

m
.

But ∑
m≤x/d

1

m
= log x− log d+ γ +O

(
d

x

)
,

hence∑
n≤x

log n

n
= (log x)

∑
d≤x

Λ(d)

d
−
∑
d≤x

Λ(d) log d

d
+ γ

∑
d≤x

Λ(d)

d

+O

1

x

∑
d≤x

Λ(d)


= log x

(
log x+A+O

(
1

log x

))
− 1

2
(log x)2

+O(log log x) + γ log x+O(1)

=
1

2
(log x)2 + (A+ γ) log x+O(log log x)

as claimed.
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f. Note that log t
t is monotonically decreasing for t ≥ e. Therefore,

for any n ≥ 4, we have∫ n+1

n

log t

t
dt ≤ log n

n
≤
∫ n

n−1

log t

t
dt.

Summing this over 4 ≤ n ≤ x gives

1

2
(log x)2 − 1

2
(log 4)2 =

∫ x

4

log t

t
dt

≤
∑

4≤n≤x

log n

n

≤
∫ x

3

log t

t
dt

=
1

2
(log x)2 − 1

2
(log 3)2.

Inserting the small values of n certainly gives∑
n≤x

log n

n
=

1

2
(log x)2 +O(1).

Since we proved in e.) that∑
n≤x

log n

n
=

1

2
(log x)2 + (A+ γ) log x+O(log log x),

this implies that A = −γ and the remaining assertions follow.~���2 a. • If p = 2, then 2 = (±1)2 + (±1)2 are the only 4 possibilities.

• Let now p ≡ 1 mod 4 and let m := g
p−1
4 . In particular m4 ≡

1, so m2 ≡ ±1. But p − 1 is the minimun so that gp−1 ≡ 1,
hence m2 ≡ −1 mod p. If p|(m2 + 1), then p|(m+ i)(m− i)
in Z[i]. If p were irreducible, we’d have p|(m+ i) or p|(m− i).
But m

p ±
i
p /∈ Z[i], hence p is irreducible in Z[i].

There exist a, b, c, d ∈ Z so that p = (a + ib)(c + id). Since
p ∈ Z, we have p2 = (a2 + b2)2 and so p = a2 + b2.
Moreover, the factorization p = (a+ ib)(c+ id) is essentially
unique in Z[i], hence

p = (±a)2 + (±b)2 = (±b)2 + (±a)2

are the only 8 possibilities
• If p ≡ 3 mod 4, then r(p) = 0, in particular p irreducible.

That’s because for all a ∈ Z, a2 ≡ 0 or 1 mod 4. So a sum of
two squares can be only 0, 1 or 2 mod 4.
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• Let now n = a2 + b2 and p ≡ 3 mod 4 a divisor of n. Since
p|(a + ib)(a − ib) and p is irreducible in Z[i], we have that
either p|(a+ ib) or p|(a− ib), so p|a and p|b and so p2|n.
By induction, one sees that the exponent of p in n must be
even.

Finally, from the identity (a2 + b2)(c2 +d2) = (ac+ bd)2(ac− bd2)
one has that if n and m are representable as sum of two squares,
then so is nm.

b. Let’s verify the identity in the case n = a2 + b2 odd. Write

n = pr11 . . . prkk q
2n1
1 . . . q2ns

s ,

where pi ≡ 1 mod 4 and qi ≡ 3 mod 4. Then

a+ ib = qn1
1 . . . qnss

k∏
i=1

(ai + ibi)
r′i(ai − ibi)r

′′
i ,

where pj = a2
j + b2j and rj = r′j + r′′j . Thus we have rj + 1

possibilities for every j, so
∏k
j=1(rj + 1) possibilities in total,

which became 4
∏k
j=1(rj + 1) by counting the units.

If n is odd, we then get

r(n)

4
=

{∏k
j=1(rj + 1) if n = pr11 . . . prkk q

2n1
1 . . . q2ns

s

0 if n has only odd powers in the factor.

On the other hand, if p is an odd prime, then

(χ4∗1)(p`) =
∑
d|p`

χ4(d) =
∑̀
c=0

χ4(pc) =


`+ 1 if p ≡ 1 mod 4{

1 if ` is even
0 if ` is odd

if p ≡ 3 mod 4.

In both cases, we have (χ4 ∗ 1)(p`) = r(p`)
4 .

c. Since |χ4(n)| ≤ 1 for every n,

r(n)

4
= (χ4 ∗ 1)(n) =

∑
d|n

χ4(d) ≤
∑
d|n

|χ4(d)| ≤ τ(n).

d. For every point of Z2, consider the square of side 1 with vertex
on the below-left of p. The problem is to compute the sum of
the areas of the unitary squares whose vertices on the below-left
are inside the circle. This area is greater than the area of the
circle of radius

√
x −
√

2, since the latter circle is contained in
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these squares. The are is also smaller that the area of the circle
of radius

√
x+
√

2, which contains all these squares. Hnece

π(
√
x−
√

2)2 ≤
∑
n≤x

r(n) ≤ π(
√
x+
√

2)2,

which implies the claim.

e. This simply follows by the fact that for every z ≥ 1,

1

N

∑
n≤N

1≤r(n)≤z

1 ≤ 1

N

∑
n≤N

1≤r(n)

1� 1

N

N√
logN

−→
N→+∞

0.


