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@ a. Suppose that n = p{*---p;" with distinct primes py,....p; and

e; > 1. Then
ZA(d) = Z logp =erlogpy + - + ¢ logp; = logn.
d|n p¥|n

b. This is partial summation: We have
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Since 1/1( ) =0 ( T(logD)? > the integral in A is absolutely conver-

gent and we can write
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Putting these together gives

A(n) () - 1
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as claimed.



d. By using partial summation on c¢.) and the facts that
logt 1
3 dt = (log £24+C  and / Flog = loglogt+C.

we see that
A(n)
A(n)logn A(n) /x Don<t n
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= (log iL‘) + Alogx — f(log z)? — Alog z 4 O(loglog x)

= i(log z)? 4+ O(loglog )

as required.

e. We have
1 1 A(d) 1
Zogn > - ZA =D Ad) > —=> = D
n<z n<x d|n d<z n;ﬁ?d) d<z m<z/d
But ) p
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hence
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0] (; > A(d))
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1 1
=logz (logz+ A+ 0O —) | — =(logz)?
log 2

+ O(loglog ) + vylogz + O(1)

1
= §(log z)? 4 (A + ) log z + O(loglog x)

as claimed.



f. Note that lngt is monotonically decreasing for ¢ > e. Therefore,
for any n > 4, we have

/"+1 10gtdt< logn </” lOgtdt
n t on o Jp t

Summing this over 4 < n < x gives

1 *logt
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5 (log4) e
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= E(log z)? — §(log 3)2.

1
§(log 1‘)2

Inserting the small values of n certainly gives

Z logn _ %(logac)2 + O(1).

n

n<x

Since we proved in e.) that

1 1
Z Oin - §(log1’)2 + (A+~)logx + O(loglog z),
n<zx

this implies that A = —~ and the remaining assertions follow. [

@ a. e If p=2, then 2 = (+1)2 + (£1)? are the only 4 possibilities.
e Let now p =1 mod 4 and let m := ng_l. In particular m* =
1, so m?> = £1. But p — 1 is the minimun so that ¢g?~! = 1,
hence m? = —1 mod p. If p|(m? + 1), then p|(m + i)(m — i)
in Z[i]. If p were irreducible, we’d have p|(m+1) or p|(m —1).
But “ & % ¢ 7Z[i], hence p is irreducible in Z]i].
There exist a,b,c,d € Z so that p = (a + ib)(c + id). Since
p € Z, we have p? = (a® + v?)? and so p = a® + b°.
Moreover, the factorization p = (a + ib)(c + id) is essentially
unique in Z[i], hence

p=(Fa)® + (£b)* = (£b)* + (£a)*

are the only 8 possibilities

e If p = 3 mod 4, then r(p) = 0, in particular p irreducible.
That’s because for all @ € Z, a®> = 0 or 1 mod 4. So a sum of
two squares can be only 0,1 or 2 mod 4.



e Let now n = a® + b and p = 3 mod 4 a divisor of n. Since
pl(a + ib)(a — ib) and p is irreducible in Z[i], we have that
either p|(a + ib) or p|(a — ib), so pla and p|b and so p?|n.

By induction, one sees that the exponent of p in n must be
even.

Finally, from the identity (a? + b?)(c? +d?) = (ac+bd)?(ac — bd?)
one has that if n and m are representable as sum of two squares,
then so is nm.

. Let’s verify the identity in the case n = a® + b odd. Write

Tk 2n1 2ng

n=p'.ptat G,
where p; = 1 mod 4 and ¢; = 3 mod 4. Then

k
a+ib=q"...q}* H(ai + b)) (ag — ib)"7
i=1
where p; = ajz + bjz and r; = 75 + 77, Thus we have r; + 1
possibilities for every j, so H§:1(7”j + 1) possibilities in total,
which became 4 H;?:l(rj + 1) by counting the units.
If n is odd, we then get

r(n) _ T +1) =t optai™ . g2
4 0 if n has only odd powers in the factor.

On the other hand, if p is an odd prime, then

¢ (41 ifp=1 mod 4
(xax1)(p ZX4 Z x4(p°) = 1 if /is even ifp=3 mod 4
d|p* =0 0 if ¢is odd
_ )

In both cases, we have (x4 x 1)(p*) = =&
. Since |xa(n)| <1 for every n,

7“(471) (xa = 1)( ZX4 <Z\X4 )| < 7(n).

dln dln

. For every point of Z?2, consider the square of side 1 with vertex
on the below-left of p. The problem is to compute the sum of
the areas of the unitary squares whose vertices on the below-left
are inside the circle. This area is greater than the area of the
circle of radius /z — ﬂ7 since the latter circle is contained in



these squares. The are is also smaller that the area of the circle
of radius v/ + v/2, which contains all these squares. Hnece

T(Va —V2)2 <3 r(n) < 7(Vo + V2)?,

n<x

which implies the claim.
e. This simply follows by the fact that for every z > 1,
1 N
1< — 1 —
Z Z <N N log N—+o00 0

n<N n<N
1<r(n)<z 1<r(n)



