D-MATH FS 2021 Prof. E. Kowalski

Solutions 4

Probabilistic Number Theory

- (1) Any character of \mathbb{R}/\mathbb{Z} can be pulled back to a character of \mathbb{R} by composing with the canonical projection $\mathbb{R} \to \mathbb{R}/\mathbb{Z}$. Let $\xi : \mathbb{R} \to \mathbb{C}^{\times}$ be the resulting character of \mathbb{R} , i.e. $\xi(t) = \chi(t \mod \mathbb{Z})$. In the above we prove a, given this, we'd have $\xi(t) = e^{2\pi i x t}$ for some $x \in \mathbb{R}$, thus $\chi(t \mod \mathbb{Z}) = e^{2\pi i x t}$. Taking t = 1, we get $1 = e^{2\pi i x}$. Therefore $x \in \mathbb{Z}$.
 - a. Let $\xi : \mathbb{R} \to \mathbb{C}^{\times}$ be a continuous homomorphism. Because $\xi(0) = 1$, by continuity $\psi(x_0) \neq 0$ for an appropriate x_0 . Fixing such x_0 , for all real t we have

$$\int_{t}^{t+x_{0}} \xi(u) du = \int_{0}^{x_{0}} \xi(u+t) du$$
$$= \int_{0}^{x_{0}} \xi(u)\xi(t) du$$
$$= \xi(t) \int_{0}^{x_{0}} \xi(u) du.$$

Therefore

$$\xi(t) = \frac{\psi(t+x_0) - \psi(t)}{\psi(x_0)}$$

The right side, by the fundamental theorem of calculus, is a differentiable function of t, so

$$\xi'(t) = \frac{\xi(t+x_0) - \xi(t)}{\psi(x_0)} = \frac{\xi(x_0) - 1}{\psi(x_0)}\xi(t).$$

In particular

$$\xi'(t) = s\xi(t)$$

for a complex number s. By the theory of ODE, $\xi(t) = Ce^{st}$. Since $\xi(0) = 1$, we have C = 1. Moreover, $|\xi(t)| = 1$, so $e^{\Re(s)t} = 1$ for all real t, so $\Re(s) = 0$. Write $s = 2\pi i x$ for a real number x and we're done.

(2) You can check the proof in the lecture notes, Theorem 7.1.1.