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~���1 a. Let U :=
∑

k≥2(ζ(k)− 1); then

U =
∑
j≥2

∑
k≥2

1

jk
.

We first try to find a closed form formula for the second sum. Let

Tj =
∑
i≥2

1

ji
, Sj =

∑
i≥1

1

ji
.

Then
Tj = Sj −

1

j
, Tj =

Sj
j
, Sj = jTj .

Now we compute the closed form

Sj = Tj +
1

j

Sj −
Sj
j

=
1

j

(j − 1)Sj = 1

Sj =
1

j
− 1

Tj =
1

j − 1
− 1

j
.

Let’s write the sequence up

U =
(1

1
− 1

2

)
+
(1

2
− 1

3

)
+
(1

3
− 1

4

)
+ . . .

We would like to regroup, but in infinite sums it’s not allowed
when we are summing sequence of elements with alternating sign.
Therefore we represent the sum as limit of finite sums sequence.

U = lim
P→∞

P∑
j=2

( 1

j − 1
− 1

j

)
= lim

P→∞

(1

1
+
(
− 1

2
+

1

2

)
+ · · ·+

(
− 1

P − 1
+

1

P − 1

)
− 1

P

)
= lim

P→∞

(
1− 1

P

)
= 1,

So U = 1.
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b. Let U :=
∑

k≥1(ζ(k)− 1). One has

V =
∑
j≥2

∑
k≥1

1

j2k
.

By letting Mj =
∑

k≥1
1
j2k

, we get

Mj =
1

j2
+
Mj

j2

j2Mj = 1 +Mj

Mj =
1

j2 − 1

=
2

2(j2 − 1)

=
(j + 1)− (j − 1)

2(j + 1)(j − 1)

=
1

2(j − 1)
− 1

2(j + 1)
.

Let’s compute V as limit of finite sums sequence.

V = lim
P→∞

P∑
j=2

( 1

2(j − 1)
− 1

2(j + 1)

)
= lim

P→∞

1

2

(
1 +

1

2
+
(
− 1

3
+

1

3

)
+ · · · − 1

P
− 1

P + 1

)
= lim

P→∞

1

2

(
1 +

1

2
− 1

P
− 1

P + 1

)
=

3

4
.

So V = 3/4.~���2 a. Write∫ T

0
|ζ(σ + it)|2dt =

∫ T

0

∑
n,m≥1

1

nσ+itmσ−itdt

=
∑
n,m≥1

1

(nm)σ

∫ T

0

( n
m

)−it
dt

=
∑
n≥1

1

n2σ
T +

∑
n6=m≥1

1

(nm)σ
e
−it log

(
n
m

)
−i log

(
n
m

) ∣∣∣T
0

= Tζ(2σ) +
∑

n6=m≥1

1

(nm)σ
e−it log

(
n
m

)
−i log

(
n
m

) ∣∣∣T
0
.



3

Tyhe second summand is

≤
∑

n6=m≥1

1

(nm)σ
2

| log
(
n
m

)
|

= 4
∑

n>m≥1

1

(nm)σ
1

| log
(
n
m

)
|
.

Note that if | log
(
n
m

)
| is small, the serie could not be convergent.

We have

log
( n
m

)
= log

(
1 +

n−m
m

)
�

{
log 2 if m < n/2
n−m
m if m ≥ n/2.

Therefore]

∑
n6=m≥1

1

(nm)σ
e−it log

(
n
m

)
−i log

(
n
m

) ∣∣∣T
0
≤ 4

∑
1≤m<n

2

1

(nm)σ log 2

+ 4
∑

n
2
≤m<n

1

(nm)σ
m

n−m
= O(1).

b. By the Stirling’s formula we have

|ζ(1− σ − it)| = 2(2π)−σ| cos(πs/2)||Γ(s)||ζ(σ + it)|

∼ (2π)
1
2
−σ|t|σ−

1
2 |ζ(σ + it)|,

which implies µ(1− σ) = σ − 1
2 + µ(σ). Since for σ < 0 we have

1− σ > 1, one gets

µ(σ) =
1

2
− σ

for σ < 0. the inequality µ(σ) ≤ −σ
2 + 1

2 , 0 ≤ σ ≤ 1 follows by
convexity.

c. By the residue theorem,

1

i

∫ 1/2+iT

1/2−iT
ζ(s)ds = −2πRess=1ζ(s)

+
(∫ 2+iT

2−iT
+

∫ 2−iT

1/2−iT
−
∫ 2+iT

1/2+iT

)
ζ(s)

ds

i
.

By the inequality for the Lindelöf function, the second and third
integrals are bounded by � T

1
4
+ε. The first one instead is∫ T

−T
ζ(2 + it)dt =

∑
n≥1

∫ T

−T

1

n2+it
dt

= 2T +
∑
n>1

n−iT − niT

n2i log n
,

where the last summand converges.
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~���3 Assume
∑

n≤x µ(n) = O(x
1
2
+ε); since for σ > 1 on has ζ(s)−1 =∑

n≥1
µ(n)
ns , by partial summation of

∑
n≤x

µ(n)
ns , and by letting x →

+∞, we get
1

ζ(s)
= s

∫ +∞

1
O
( 1

yσ+
1
2
−ε

)
dy.

Now, the function 1

yσ+
1
2−ε

is holomorphic if σ + 1
2 − ε > 1 ⇐⇒ σ >

1/2 + ε ∀ε > 0. This implies that ζ(s) has no zeros for σ > 1/2. But
those zeros are symmetric with respect to the critical line, so this is
the RH.

Conversely, by the Perron’s approximation formula with 2 ≤ T ≤ x,
one has∑

n≤x
µ(n) =

1

2πi

∫ c+iT

c−iT

1

ζ(s)

xs

s
ds+O

(x log x

T

)
, c = 1 +

1

log x
.

Shift the integration line at 1/2 + ε; since we are assuming the RH,
we’ll not encounter any zero of ζ(s). By the estimate

1

ζ(s)
� (1 + |t|ε), σ >

1

2
+ ε,

valid under the RH, we have∑
n≤x

µ(n)�ε x
1/2+εT ε +

x

T 1−ε log x.

Pick T = x and the claim follows.~���4 See https://blogs.ethz.ch/kowalski/2009/04/02/who-remembers-the-mills-
number/


