Prof. Dr. A. Iozzi Y. Krifka

Exercise Sheet 2

Exercise 1.(Invariant Riemannian metrics on homogeneous spaces):

In the first exercise class we saw that every homogeneous *G*-manifold *M* is diffeomorphic to a quotient G/H, where $H = G_p < G$ is the stabilizer subgroup of a point $p \in M$. The diffeomorphism $F: G/H \to M$ is given by $F(gH) = g \cdot p$. Moreover, we saw that the set $R(M)^G$ of *G*-invariant Riemannian metrics on *M* can be identified with the set $Sym_+(T_pM)^H$ of *H*-invariant inner products on the tangent space T_pM .

Complete our discussion by showing the following:

- a) Let \mathfrak{g} and \mathfrak{h} denote the Lie algebras of G and H, respectively. Then the differential $dF_e: \mathfrak{g}/\mathfrak{h} \cong T_eG/H \to T_pM$ induces a bijection between H-invariant inner products on T_pM and $\operatorname{Ad}(H)$ -invariant inner products on $\mathfrak{g}/\mathfrak{h}$.
- b) Show that every Ad(H)-invariant inner product $\langle \cdot, \cdot \rangle \in Sym_+(\mathfrak{g}/\mathfrak{h})$ is also $ad(\mathfrak{h})$ -invariant, i.e.

$$\langle \operatorname{ad}(X)Y, Z \rangle + \langle Y, \operatorname{ad}(X)Z \rangle = 0$$

for all $X \in \mathfrak{h}, Y, Z \in \mathfrak{g/h}$.

If *H* is connected, the converse holds as well: Every $ad(\mathfrak{h})$ -invariant inner product is Ad(H)-invariant.

c) Let G = GL(n, ℝ) and let d₁,..., d_m ∈ ℕ such that d₁ + ··· + d_m = n. Denote by P < G the subgroup that consists of block upper triangular matrices of the form</p>

$$\left(\begin{array}{ccc}
B_1 & * \\
& \ddots & \\
0 & B_m
\end{array}\right),$$

where $B_i \in GL(d_i, \mathbb{R})$, i = 1, ..., m.

Use the above characterization to show that there are no G-invariant Riemannian metrics on G/P.

<u>Remark:</u> The quotient space *G*/*P* can be interpreted as the flag variety of partial flags $\{0\} \subsetneq V_1 \subsetneq V_2 \subsetneq \cdots \subsetneq V_m = \mathbb{R}^n$, where dim $V_i = d_1 + \cdots + d_i$, $i = 1, \dots, m$.

Exercise 2.(Compact Lie groups as symmetric spaces):

Let G be a compact connected Lie group and let

$$G^* = \{(g,g) \in G \times G : g \in G\} < G$$

denote the diagonal subgroup.

- a) Show that the pair $(G \times G, G^*)$ is a Riemannian symmetric pair, and the coset space $G \times G/G^*$ is diffeomorphic to *G*.
- b) Using the above, explain how any compact connected Lie group *G* can be regarded as a Riemannian globally symmetric space.
- c) Let g denote the Lie algebra of *G*. Show that the exponential map from g into the Lie group *G* coincides with the exponential map from g into the Riemannian *globally symmetric space G*.

Exercise 3.(Compact semisimple Lie groups as symmetric spaces):

A compact semisimple Lie group *G* has a bi-invariant Riemannian structure *Q* such that Q_e is the negative of the Killing form of the Lie algebra $\mathfrak{g} = \text{Lie}(G)$. If *G* is considered as a symmetric space $G \times G/G^*$ as in the above exercise, it acquires a bi-invariant Riemannian structure Q^* from the Killing form of $\mathfrak{g} \times \mathfrak{g}$. Show that $Q = 2Q^*$.

Exercise 4.(Constant sectional curvature determines isometry type):

Show or look up the following theorem:

Let M be a complete and simply connected Riemannian manifold of dimension n and constant sectional curvature K. Then M is isometric to:

- *a)* the hyperbolic *n*-space \mathbb{H}^n , if $K \equiv -1$;
- b) the Euclidean n-space \mathbb{R}^n , if $K \equiv 0$;
- c) the n-sphere \mathbb{S}^n , if $K \equiv 1$.

Exercise 5.(Closed differential forms):

Let *M* be a Riemannian globally symmetric space and let ω be a differential form on *M* invariant under Isom(*M*)°. Prove that $d\omega = 0$.

Due date: Thursday, 25/03/2021

Please, upload your solution via the SAM upload tool.

In order to access the website you will need a NETHZ-account and you will have to be connected to the ETH-network. From outside the ETH network you can connect to the ETH network via VPN. Here are instructions on how to do that.

Make sure that your solution is **one PDF file** and that its **file name** is formatted in the following way:

solution_<number exercise sheet>_<last name>_<first name>.pdf

For example: If your first name is Alice, your last name is Miller, and you want to hand-in your solution to Exercise Sheet 2, then you will have to upload your solution as **one** PDF file with the following file name:

solution_2_Miller_Alice.pdf

Solutions that fail to comply with the above requirements will be ignored.