Solution Exercise Sheet 2

Exercise 1.(Invariant Riemannian metrics on homogeneous spaces):

In the first exercise class we saw that every homogeneous G-manifold M is diffeomorphic to a quotient G / H, where $H=G_{p}<G$ is the stabilizer subgroup of a point $p \in M$. The diffeomorphism $F: G / H \rightarrow M$ is given by $F(g H)=g \cdot p$. Moreover, we saw that the set $R(M)^{G}$ of G-invariant Riemannian metrics on M can be identified with the set $\operatorname{Sym}_{+}\left(T_{p} M\right)^{H}$ of H -invariant inner products on the tangent space $T_{p} M$.

Complete our discussion by showing the following:
a) Let \mathfrak{g} and $\mathfrak{I d}$ denote the Lie algebras of G and H, respectively. Then the differential $d F_{e}: \mathfrak{g} / \mathfrak{I} \cong T_{e} G / H \rightarrow T_{p} M$ induces a bijection between H-invariant inner products on $T_{p} M$ and $\operatorname{Ad}(H)$-invariant inner products on $\mathfrak{g} / \mathfrak{r}$.

Solution: Because $\operatorname{Ad}(H)$ preserves $\mathfrak{l x}$, the adjoint action of H descends to an action on $\mathfrak{g} / \mathfrak{h}$. Moreover, $d F: \mathfrak{g} / \mathfrak{h} \cong T_{e H} G / H \rightarrow T_{p} M$ is H-equivariant. Indeed,

$$
\tilde{F}\left(h g h^{-1}\right)=h g h^{-1} \cdot p=h g \cdot p=h \cdot \tilde{F}(g)
$$

for all $g \in G, h \in H$, where $\tilde{F}(g)=g \cdot p$.
Taking derivatives yields $d \tilde{F} \circ \operatorname{Ad}(h)=d h \circ d \tilde{F}$ which descends to $d F \circ \operatorname{Ad}(h)=$ $d h \circ d F$ for all $h \in H$.
It follows directly that $d F^{*}: \operatorname{Sym}_{+}\left(T_{p} M\right)^{H} \rightarrow \operatorname{Sym}_{+}(\mathfrak{g} / \mathfrak{h})^{\operatorname{Ad}(H)}$ is a bijection.
b) Show that every $\operatorname{Ad}(H)$-invariant inner product $\langle\cdot, \cdot\rangle \in \operatorname{Sym}_{+}(\mathfrak{g} / \mathfrak{r})$ is also ad $(\mathfrak{r})-$ invariant, i.e.

$$
\langle\operatorname{ad}(X) Y, Z\rangle+\langle Y, \operatorname{ad}(X) Z\rangle=0
$$

for all $X \in \mathfrak{h}, Y, Z \in \mathfrak{g} / \mathfrak{h}$.
If H is connected, the converse holds as well: Every ad((\mathfrak{r})-invariant inner product is $\operatorname{Ad}(H)$-invariant.

Solution: Let $\langle\cdot, \cdot\rangle \in \operatorname{Sym}_{+}(\mathfrak{g} / \mathfrak{h})$ and let $X \in \mathfrak{h}, Y, Z \in \mathfrak{g} / \mathfrak{h}$.
First, suppose $\langle\cdot, \cdot\rangle$ is $\operatorname{Ad}(H)$-invariant. Then

$$
\langle\operatorname{Ad}(\exp (t X)) Y, \operatorname{Ad}(\exp (t X)) Z\rangle=\langle Y, Z\rangle,
$$

and by differentiating at $t=0$ we obtain

$$
\langle[X, Y], Z\rangle+\langle Y,[X, Z]\rangle=0,
$$

i.e. $\langle\cdot, \cdot\rangle \in \operatorname{Sym}_{+}(\mathfrak{g} / \mathfrak{r})^{\text {ad }(\mathfrak{r})}$.

Now suppose that H is connected and $\langle\cdot, \cdot\rangle$ is ad (\mathfrak{r})-invariant, i.e.

$$
\langle[X, Y], Z\rangle+\langle Y,[X, Z]\rangle=0
$$

holds for all $X \in \mathfrak{h}, Y, Z \in \mathfrak{g} / \mathfrak{l}$. In order to show that $\langle\cdot \cdot \cdot\rangle$ is $\operatorname{Ad}(H)$-invariant it will be sufficient to show that there is an open neighborhood $e \in U \subseteq H$ such that $\langle\cdot, \cdot\rangle$ is $\operatorname{Ad}(U)$-invariant. Indeed, H is generated by U because H is connected.
Let $U \subseteq H$ be an open identity neighborhood onto which $\exp : V \subseteq \mathfrak{r} \rightarrow U \subseteq H$ is a diffeomorphism. Let $h \in U$ and $X \in V$ such that $h=\exp (X)$. We define $\psi(t):=\langle\operatorname{Ad}(\exp (t X)) Y, \operatorname{Ad}(\exp (t X)) Z\rangle$ for all $t \in \mathbb{R}$. Then $\psi(0)=\langle Y, Z\rangle$ and

$$
\begin{aligned}
\psi^{\prime}(t) & =\left.\frac{d}{d s}\right|_{s=0}\langle\operatorname{Ad}(\exp ((t+s) X)) Y, \operatorname{Ad}(\exp ((t+s) X)) Z\rangle \\
& =\left.\frac{d}{d s}\right|_{s=0}\langle\operatorname{Ad}(\exp (s X)) \operatorname{Ad}(\exp (t X)) Y, \operatorname{Ad}(\exp (s X)) \operatorname{Ad}(\exp (t X)) Z\rangle \\
& =\langle[X, \operatorname{Ad}(\exp (t X)) Y], \operatorname{Ad}(\exp (t X)) Z\rangle+\langle\operatorname{Ad}(\exp (t X)) Y,[X, \operatorname{Ad}(\exp (t X)) Z]\rangle \\
& =0,
\end{aligned}
$$

for all $t \in \mathbb{R}$.
Thus, $\psi(t)=\langle Y, Z\rangle$ for all $t \in \mathbb{R}$. In particular

$$
\psi(1)=\langle\operatorname{Ad}(\exp (X)) Y, \operatorname{Ad}(\exp (X)) Z\rangle=\langle\operatorname{Ad}(h) Y, \operatorname{Ad}(h) Z\rangle=\langle Y, Z\rangle .
$$

c) Let $G=\operatorname{GL}(n, \mathbb{R})$ and let $d_{1}, \ldots, d_{m} \in \mathbb{N}$ such that $d_{1}+\cdots+d_{m}=n$. Denote by $P<G$ the subgroup that consists of block upper triangular matrices of the form

$$
\left(\begin{array}{ccc}
\boxed{B_{1}} & & * \\
& \ddots & \\
0 & & \boxed{B_{m}}
\end{array}\right)
$$

where $B_{i} \in \mathrm{GL}\left(d_{i}, \mathbb{R}\right), i=1, \ldots, m$.
Use the above characterization to show that there are no G-invariant Riemannian metrics on G / P.

Remark: The quotient space G / P can be interpreted as the flag variety of partial flags $\{0\} \subsetneq V_{1} \subsetneq V_{2} \subsetneq \cdots \subsetneq V_{m}=\mathbb{R}^{n}$, where $\operatorname{dim} V_{i}=d_{1}+\cdots+d_{i}, i=1, \ldots, m$.

Solution: Let $\mathfrak{g}=\mathfrak{g l}(\mathbb{R})=\operatorname{Lie}(G)$, let $\mathfrak{p}=\operatorname{Lie}(P) \leq \mathfrak{g}$ and let $\mathfrak{l} \leq \mathfrak{g}$ be the subspace of block lower diagonal matrices such that $\mathfrak{g}=\mathfrak{p} \oplus \mathrm{l}$. Thus, we may
identify $\mathfrak{g} / \mathfrak{p} \cong \mathfrak{l}$.
Furthermore, we use the standard notation $E_{i j} \in \mathfrak{g}$ to denote the matrix whose $i j$-entry is 1 and all other entries are 0 .
Then $H:=E_{11}-E_{n n} \in \mathfrak{p}$ and $E_{n 1} \in \mathfrak{I} \cong \mathfrak{g} / \mathfrak{p}$. A direct computation yields

$$
\left[H, E_{n 1}\right]=\left[E_{11}, E_{n 1}\right]-\left[E_{n n}, E_{n 1}\right]=-E_{n 1}-E_{n 1}=-2 E_{n 1} .
$$

If there were a G-invariant Riemannian metric on G / P then this would amount to an $\operatorname{ad}(\mathfrak{r r})$-invariant inner product $\langle\cdot \cdot \cdot\rangle$ on $\mathfrak{g} / \mathfrak{p} \cong \mathrm{I}$ by b). However, by the above computation, we would then have

$$
0=\left\langle\left[H, E_{n 1}\right], E_{n 1}\right\rangle+\left\langle E_{n 1},\left[H, E_{n 1}\right]\right\rangle=-4\left\langle E_{n 1}, E_{n 1}\right\rangle \neq 0,
$$

which is absurd.

Exercise 2.(Compact Lie groups as symmetric spaces):

Let G be a compact connected Lie group and let

$$
G^{*}=\{(g, g) \in G \times G: g \in G\}<G
$$

denote the diagonal subgroup.
a) Show that the pair $\left(G \times G, G^{*}\right)$ is a Riemannian symmetric pair, and the coset space $G \times G / G^{*}$ is diffeomorphic to G.

Solution: Consider the mapping $\sigma:\left(g_{1}, g_{2}\right) \mapsto\left(g_{2}, g_{1}\right)$. This is an involutive automorphism of the product group $G \times G$. The fixed set of σ is precisely the diagonal G^{*}. It follows that the pair ($G \times G, G^{*}$) is a Riemannian symmetric pair. The coset space $G \times G / G^{*}$ is diffeomorphic to G under the mapping $\left[\left(g_{1}, g_{2}\right)\right] \mapsto \pi\left(g_{1}, g_{2}\right):=g_{1} g_{2}^{-1}$.
b) Using the above, explain how any compact connected Lie group G can be regarded as a Riemannian globally symmetric space.

Solution: By Proposition 3.4 from Helgason, Ch. IV, we see that G is a Riemanian globally symmetric space in each bi-invariant Riemannian structure; note here that a Riemannian structure on $G \times G / G^{*}$ is $G \times G$-invariant if and only if the corresponding Riemannian structure on G is bi-translation invariant.
c) Let \mathfrak{g} denote the Lie algebra of G. Show that the exponential map from \mathfrak{g} into the Lie group G coincides with the exponential map from \mathfrak{g} into the Riemannian globally symmetric space G.

Solution: Note that the product algebra $\mathfrak{g} \times \mathfrak{g}$ is the Lie algebra of $G \times G$.

Let $\exp ^{*}$ denote the exponential mapping of $\mathfrak{g} \times \mathfrak{g}$ int $G \times G$, exp denote the exponential mapping of \mathfrak{g} into G, and Exp denote the Riemannian exponential mapping of $\mathfrak{g} \cong T_{e} G$ into G (considered as a Riemannian globally symmetric space). We want to show that $\exp X=\operatorname{Exp} X$ for all $X \in \mathfrak{g}$. Using $d \pi(X, Y)=X-Y$, we deduce that $\pi\left(\exp ^{*}(X,-X)\right)=\operatorname{Exp}(d \pi(X,-X))$. Hence $\exp X \cdot(\exp (-X))^{-1}=\operatorname{Exp}(2 X)$ and this implies that $\exp X=\operatorname{Exp} X$.

Exercise 3.(Compact semisimple Lie groups as symmetric spaces):

A compact semisimple Lie group G has a bi-invariant Riemannian structure Q such that Q_{e} is the negative of the Killing form of the Lie algebra $\mathfrak{g}=\operatorname{Lie}(G)$. If G is considered as a symmetric space $G \times G / G^{*}$ as in the above exercise, it acquires a bi-invariant Riemannian structure Q^{*} from the Killing form of $\mathfrak{g} \times \mathfrak{g}$. Show that $Q=2 Q^{*}$.

Solution: Let π and σ be as in the above solution. The map $d \pi$ maps the -1 eigenspace of $d \sigma$ onto \mathfrak{g} as follows: $d \pi(X,-X)=2 X$. Using this, we can check that

$$
2 B_{\mathfrak{g} \times \mathfrak{g}}((X,-X),(X,-X))=B_{\mathfrak{g}}(2 X, 2 X),
$$

which is equivalent to $Q=2 Q^{*}$.

Exercise 4.(Constant sectional curvature determines isometry type):

Show or look up the following theorem:
Let M be a complete and simply connected Riemannian manifold of dimension n and constant sectional curvature K. Then M is isometric to:
a) the hyperbolic n-space \mathbb{H}^{n}, if $K \equiv-1$;
b) the Euclidean n-space \mathbb{R}^{n}, if $K \equiv 0$;
c) the n-sphere \mathbb{S}^{n}, if $K \equiv 1$.

Solution: This is Theorem 4.1 from do Carmo, Ch. 8.

Exercise 5.(Closed differential forms):

Let M be a Riemannian globally symmetric space and let ω be a differential form on M invariant under $\operatorname{Isom}(M)^{\circ}$. Prove that $d \omega=0$.

Solution: Let s_{m} denote the geodesic symmetry at some point $m \in M$, and let $\omega \in$ $\Omega^{p}(M)$ be an invariant differential p-form on M. Because $d_{m} s_{m}=-\mathrm{id}: T_{p} M \rightarrow$ $T_{p} M$, we get $\left(s_{m}^{*} \omega\right)_{m}=(-1)^{p} \omega_{m}$ at the point $m \in M$. Because ω is invariant, $s_{m}^{*} \omega$ is invariant as well. Because $\operatorname{Iso}(M)^{\circ}$ acts transitively, invariant differential forms are determined by their value at a single point such that

$$
s_{m}^{*} \omega=(-1)^{p} \omega
$$

on all of M.
Therefore, we obtain

$$
d \omega=(-1)^{p} d\left(s_{m}^{*} \omega\right)=(-1)^{p} s_{m}^{*} d \omega=(-1)^{2 p+1} d \omega,
$$

whence $d \omega=0$.

