Solution Exercise Sheet 2

Exercise 1.(Invariant Riemannian metrics on homogeneous spaces):

In the first exercise class we saw that every homogeneous *G*-manifold *M* is diffeomorphic to a quotient *G*/*H*, where $H = G_p < G$ is the stabilizer subgroup of a point $p \in M$. The diffeomorphism $F: G/H \to M$ is given by $F(gH) = g \cdot p$. Moreover, we saw that the set $R(M)^G$ of *G*-invariant Riemannian metrics on *M* can be identified with the set $Sym_+(T_pM)^H$ of *H*-invariant inner products on the tangent space T_pM .

Complete our discussion by showing the following:

a) Let g and h denote the Lie algebras of G and H, respectively. Then the differential $dF_e: \mathfrak{g}/\mathfrak{h} \cong T_eG/H \to T_pM$ induces a bijection between H-invariant inner products on T_pM and $\operatorname{Ad}(H)$ -invariant inner products on $\mathfrak{g}/\mathfrak{h}$.

Solution: Because Ad(H) preserves \mathfrak{h} , the adjoint action of H descends to an action on $\mathfrak{g}/\mathfrak{h}$. Moreover, $dF: \mathfrak{g}/\mathfrak{h} \cong T_{eH}G/H \to T_pM$ is H-equivariant. Indeed,

$$\tilde{F}(hgh^{-1}) = hgh^{-1} \cdot p = hg \cdot p = h \cdot \tilde{F}(g)$$

for all $g \in G, h \in H$, where $\tilde{F}(g) = g \cdot p$. Taking derivatives yields $d\tilde{F} \circ \operatorname{Ad}(h) = dh \circ d\tilde{F}$ which descends to $dF \circ \operatorname{Ad}(h) = dh \circ dF$ for all $h \in H$. It follows directly that dF^* : $\operatorname{Sym}_+(T_pM)^H \to \operatorname{Sym}_+(\mathfrak{g}/\mathfrak{h})^{\operatorname{Ad}(H)}$ is a bijection.

b) Show that every Ad(*H*)-invariant inner product (·, ·) ∈ Sym₊(g/𝔅) is also ad(𝔅)-invariant, i.e.

$$\langle \operatorname{ad}(X)Y, Z \rangle + \langle Y, \operatorname{ad}(X)Z \rangle = 0$$

for all $X \in \mathfrak{h}, Y, Z \in \mathfrak{g/h}$.

If *H* is connected, the converse holds as well: Every $ad(\mathfrak{h})$ -invariant inner product is Ad(H)-invariant.

Solution: Let $\langle \cdot, \cdot \rangle \in \text{Sym}_+(\mathfrak{g}/\mathfrak{h})$ and let $X \in \mathfrak{h}, Y, Z \in \mathfrak{g}/\mathfrak{h}$. First, suppose $\langle \cdot, \cdot \rangle$ is Ad(*H*)-invariant. Then

$$\langle \operatorname{Ad}(\exp(tX))Y, \operatorname{Ad}(\exp(tX))Z \rangle = \langle Y, Z \rangle,$$

and by differentiating at t = 0 we obtain

$$\langle [X, Y], Z \rangle + \langle Y, [X, Z] \rangle = 0,$$

i.e. $\langle \cdot, \cdot \rangle \in \operatorname{Sym}_+(\mathfrak{g}/\mathfrak{h})^{\operatorname{ad}(\mathfrak{h})}$.

Now suppose that *H* is connected and $\langle \cdot, \cdot \rangle$ is ad(\mathfrak{h})-invariant, i.e.

$$\langle [X, Y], Z \rangle + \langle Y, [X, Z] \rangle = 0$$

holds for all $X \in \mathfrak{h}, Y, Z \in \mathfrak{g}/\mathfrak{h}$. In order to show that $\langle \cdot, \cdot \rangle$ is $\operatorname{Ad}(H)$ -invariant it will be sufficient to show that there is an open neighborhood $e \in U \subseteq H$ such that $\langle \cdot, \cdot \rangle$ is $\operatorname{Ad}(U)$ -invariant. Indeed, H is generated by U because H is connected.

Let $U \subseteq H$ be an open identity neighborhood onto which exp: $V \subseteq \mathfrak{h} \to U \subseteq H$ is a diffeomorphism. Let $h \in U$ and $X \in V$ such that $h = \exp(X)$. We define $\psi(t) := \langle \operatorname{Ad}(\exp(tX))Y, \operatorname{Ad}(\exp(tX))Z \rangle$ for all $t \in \mathbb{R}$. Then $\psi(0) = \langle Y, Z \rangle$ and

$$\psi'(t) = \frac{d}{ds}\Big|_{s=0} \langle \operatorname{Ad}(\exp((t+s)X))Y, \operatorname{Ad}(\exp((t+s)X))Z \rangle$$

= $\frac{d}{ds}\Big|_{s=0} \langle \operatorname{Ad}(\exp(sX))\operatorname{Ad}(\exp(tX))Y, \operatorname{Ad}(\exp(sX))\operatorname{Ad}(\exp(tX))Z \rangle$
= $\langle [X, \operatorname{Ad}(\exp(tX))Y], \operatorname{Ad}(\exp(tX))Z \rangle + \langle \operatorname{Ad}(\exp(tX))Y, [X, \operatorname{Ad}(\exp(tX))Z] \rangle$
= 0,

for all $t \in \mathbb{R}$. Thus, $\psi(t) = \langle Y, Z \rangle$ for all $t \in \mathbb{R}$. In particular

$$\psi(1) = \langle \operatorname{Ad}(\exp(X))Y, \operatorname{Ad}(\exp(X))Z \rangle = \langle \operatorname{Ad}(h)Y, \operatorname{Ad}(h)Z \rangle = \langle Y, Z \rangle.$$

c) Let $G = GL(n, \mathbb{R})$ and let $d_1, \dots, d_m \in \mathbb{N}$ such that $d_1 + \dots + d_m = n$. Denote by P < G the subgroup that consists of block upper triangular matrices of the form

$$\left(\begin{array}{ccc}
B_1 & * \\
& \ddots & \\
0 & B_m
\end{array}\right),$$

where $B_i \in GL(d_i, \mathbb{R}), i = 1, \dots, m$.

Use the above characterization to show that there are no G-invariant Riemannian metrics on G/P.

<u>Remark</u>: The quotient space *G*/*P* can be interpreted as the flag variety of partial flags $\{0\} \subseteq V_1 \subseteq V_2 \subseteq \cdots \subseteq V_m = \mathbb{R}^n$, where dim $V_i = d_1 + \cdots + d_i$, $i = 1, \dots, m$.

Solution: Let $\mathfrak{g} = \mathfrak{gl}_n(\mathbb{R}) = \text{Lie}(G)$, let $\mathfrak{p} = \text{Lie}(P) \leq \mathfrak{g}$ and let $\mathfrak{l} \leq \mathfrak{g}$ be the subspace of block lower diagonal matrices such that $\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{l}$. Thus, we may

identify $\mathfrak{g}/\mathfrak{p} \cong \mathfrak{l}$.

Furthermore, we use the standard notation $E_{ij} \in \mathfrak{g}$ to denote the matrix whose ij-entry is 1 and all other entries are 0.

Then $H \coloneqq E_{11} - E_{nn} \in \mathfrak{p}$ and $E_{n1} \in \mathfrak{l} \cong \mathfrak{g}/\mathfrak{p}$. A direct computation yields

$$[H, E_{n1}] = [E_{11}, E_{n1}] - [E_{nn}, E_{n1}] = -E_{n1} - E_{n1} = -2E_{n1}$$

If there were a *G*-invariant Riemannian metric on *G*/*P* then this would amount to an ad(\mathfrak{h})-invariant inner product $\langle \cdot, \cdot \rangle$ on $\mathfrak{g}/\mathfrak{p} \cong \mathfrak{l}$ by b). However, by the above computation, we would then have

$$0 = \langle [H, E_{n1}], E_{n1} \rangle + \langle E_{n1}, [H, E_{n1}] \rangle = -4 \langle E_{n1}, E_{n1} \rangle \neq 0,$$

which is absurd.

Exercise 2.(Compact Lie groups as symmetric spaces):

Let G be a compact connected Lie group and let

$$G^* = \{(g,g) \in G \times G : g \in G\} < G$$

denote the diagonal subgroup.

a) Show that the pair $(G \times G, G^*)$ is a Riemannian symmetric pair, and the coset space $G \times G/G^*$ is diffeomorphic to *G*.

Solution: Consider the mapping $\sigma: (g_1, g_2) \mapsto (g_2, g_1)$. This is an involutive automorphism of the product group $G \times G$. The fixed set of σ is precisely the diagonal G^* . It follows that the pair $(G \times G, G^*)$ is a Riemannian symmetric pair. The coset space $G \times G/G^*$ is diffeomorphic to G under the mapping $[(g_1, g_2)] \mapsto \pi(g_1, g_2) \coloneqq g_1 g_2^{-1}$.

b) Using the above, explain how any compact connected Lie group *G* can be regarded as a Riemannian globally symmetric space.

Solution: By Proposition 3.4 from Helgason, Ch. IV, we see that *G* is a Riemanian globally symmetric space in each bi-invariant Riemannian structure; note here that a Riemannian structure on $G \times G/G^*$ is $G \times G$ -invariant if and only if the corresponding Riemannian structure on *G* is bi-translation invariant.

c) Let g denote the Lie algebra of G. Show that the exponential map from g into the Lie group G coincides with the exponential map from g into the Riemannian globally symmetric space G.

Solution: Note that the product algebra $\mathfrak{g} \times \mathfrak{g}$ is the Lie algebra of $G \times G$.

Let \exp^* denote the exponential mapping of $\mathfrak{g} \times \mathfrak{g}$ int $G \times G$, exp denote the exponential mapping of \mathfrak{g} into G, and Exp denote the Riemannian exponential mapping of $\mathfrak{g} \cong T_e G$ into G (considered as a Riemannian globally symmetric space). We want to show that $\exp X = \operatorname{Exp} X$ for all $X \in \mathfrak{g}$. Using $d\pi(X,Y) = X - Y$, we deduce that $\pi(\exp^*(X,-X)) = \operatorname{Exp}(d\pi(X,-X))$. Hence $\exp X \cdot (\exp(-X))^{-1} = \operatorname{Exp}(2X)$ and this implies that $\exp X = \operatorname{Exp} X$. \Box

Exercise 3.(Compact semisimple Lie groups as symmetric spaces):

A compact semisimple Lie group *G* has a bi-invariant Riemannian structure *Q* such that Q_e is the negative of the Killing form of the Lie algebra $\mathfrak{g} = \text{Lie}(G)$. If *G* is considered as a symmetric space $G \times G/G^*$ as in the above exercise, it acquires a bi-invariant Riemannian structure Q^* from the Killing form of $\mathfrak{g} \times \mathfrak{g}$. Show that $Q = 2Q^*$.

Solution: Let π and σ be as in the above solution. The map $d\pi$ maps the -1 eigenspace of $d\sigma$ onto \mathfrak{g} as follows: $d\pi(X, -X) = 2X$. Using this, we can check that

$$2B_{\mathfrak{g}\times\mathfrak{g}}((X,-X),(X,-X))=B_{\mathfrak{g}}(2X,2X),$$

which is equivalent to $Q = 2Q^*$.

Exercise 4.(Constant sectional curvature determines isometry type):

Show or look up the following theorem:

Let M be a complete and simply connected Riemannian manifold of dimension n and constant sectional curvature K. Then M is isometric to:

- a) the hyperbolic *n*-space \mathbb{H}^n , if $K \equiv -1$;
- b) the Euclidean n-space \mathbb{R}^n , if $K \equiv 0$;
- c) the n-sphere \mathbb{S}^n , if $K \equiv 1$.

Solution: This is Theorem 4.1 from do Carmo, Ch. 8.

Exercise 5.(Closed differential forms):

Let *M* be a Riemannian globally symmetric space and let ω be a differential form on *M* invariant under Isom(*M*)°. Prove that $d\omega = 0$. **Solution:** Let s_m denote the geodesic symmetry at some point $m \in M$, and let $\omega \in \Omega^p(M)$ be an invariant differential *p*-form on *M*. Because $d_m s_m = -id$: $T_p M \to T_p M$, we get $(s_m^* \omega)_m = (-1)^p \omega_m$ at the point $m \in M$. Because ω is invariant, $s_m^* \omega$ is invariant as well. Because $Iso(M)^\circ$ acts transitively, invariant differential forms are determined by their value at a single point such that

$$s_m^*\omega = (-1)^p \omega$$

on all of M.

Therefore, we obtain

$$d\omega = (-1)^p d(s_m^* \omega) = (-1)^p s_m^* d\omega = (-1)^{2p+1} d\omega,$$

whence $d\omega = 0$.