lecture
estlanch zon
\qquad

RSS＝Riemannian sprues．space globally
Proposition II． 7 M RSS，then M is coneplete and Ito $(M)^{\circ}$ acts transitively．
Last week conepletenes
Now transitivity．
Lemma I． 8 M RSS，then the map $p \longmapsto s_{p}$ is continuous．
How do we use H．T：

$$
\begin{aligned}
& M \times M \longrightarrow I_{S O}(M) \\
& (p, q) \longmapsto S_{p o} s_{q}
\end{aligned}
$$

Since $s_{p}^{2}=I d \Rightarrow$ the image of this map is in $I_{0}(\mu)^{\circ}$（M is connected）$\Rightarrow S_{p} \cdot S_{q} \in I_{80}(M)^{0}$ ． If γ is a geod．from p to q with $\gamma(0)=p_{1} \quad \gamma(t)=q \Rightarrow$

（1）$g \longmapsto g g_{p} g^{-1}$ continuous
（2）$g \mapsto s_{g p}$ cont．
（3）$g \mapsto$ sap descends to a map $g k \longmapsto s \mathrm{gs}$ $\Rightarrow p \rightarrow \delta p$ in the comp． of the inverse of the orbit map and the map in（3）\Rightarrow Oort，国

$$
s_{\gamma(t / 2)} \cdot s_{p}(p)=q
$$

$$
\overbrace{p} \quad \dot{q(t / 2)}
$$

Need to show the Lemma．
Exercise M RSS，$p \in M, k:=\delta t a b_{\text {Pro }(4)}^{(p)}$ ）
Then the orbit map Iso（4）

$$
\begin{aligned}
380(M) / K & \longrightarrow M \\
g k & \longrightarrow 9 p
\end{aligned}
$$

is a homeomorphism．
If of lenuura II－ 8
Verify that $S_{g p}=g S_{p} g^{-1}$ ．
In fact，again by lemma II． 2

$$
\begin{aligned}
& g s_{p} g^{-1}(g p)=g s_{p}(p)=g p \\
& d_{g p}\left(g s_{p} \bar{g}^{-1}\right)=\left(d_{p} g\right)(\underbrace{d_{1} s^{\prime}}_{p_{n}})\left(d_{g p} g^{-1}\right)= \\
& =-\left(d_{p} g\right)\left(d_{g p} g^{-1}\right)=-d_{g p} I d=-L= \\
& =d_{g s s_{p i}}
\end{aligned}
$$

Corollary II． 9 （ M, g ）RES，$p \in M$ ， $k_{i}=\delta_{\text {Stab }}$ Iso $^{(M)}(p)$ ．Thu K meets every conn，opt．of Iso（4）． In actiailar Iro（M）is open and of finte index in Iso（M）． of $g \in I_{s o}(M)$ ．Since Ufo（M）${ }^{\circ}$ acts trans．$\Rightarrow \exists g_{0} \in I_{8}(M)^{0}$ sir．$g p=g_{0} p \Rightarrow \exists k \in K \leq t$ ． $g=g_{0} k=y \&$ meets every conn．got．$\left(k \in g I_{s o}(k)^{0}\right)$ ，
To see the second assection， Id $\in K^{\circ} \Rightarrow k^{\circ} \subset$ Iso（ 4$)^{\circ}$ then the homo $\alpha: K \rightarrow \operatorname{Iso}(M)$ Into $(4)^{\circ}$ factors through $k^{\circ} \Rightarrow$ $\Rightarrow K / K_{0}^{0} \longrightarrow \operatorname{Iso}(M) / I_{S O}(M)^{\circ}$
By the font assertion this in into $\Rightarrow|K| K \theta|<\infty \Rightarrow| S o(M) / \underset{\left.\operatorname{Fr}(M)^{\circ}\right|^{\circ}<\infty}{ }$

Thu II. 10 MRSS. Then $\theta_{:}=150(M)$ has ar Lie opp. sturcture conyatible with the got. open top. and it acts smoothly on M. Moreover Iso (M) $K \rightarrow M$ is a ditto and k contain no nontrivial normal subgps of G.
CHelgason IV. 3.2 for a coneplete proof)
Idea to the roof

- We saw already that k has a m roth structure given by the injection $K \longrightarrow O\left(T_{p} M\right)$ reich realizes $ぬ$ as ω closed 8 logy of $O(T, M)$ hence a lie group.
- let J: $G \rightarrow M=G / k$. we are going to define a cont. local section $\phi: U \rightarrow G_{1}$, ulve
$\Rightarrow \phi: U \rightarrow G$ cone x defied as $\phi(\gamma(t)):=s_{\gamma(t / 2)}$ 。 sp. By lemma $\mathbb{T}, 8$ this is continuous. Finally \#f non-pual subs in k that ore nonual in G . In fact if there were such a stop, it would act trivially sou M.
Remark $\pi: G \rightarrow M \Rightarrow G i$ os inncial bundle over M rille fiber $K \Rightarrow$ locally G is a product

U is a nomual nad of P,
Mo $\phi=i d_{l u} \Rightarrow \phi$ is ar homes soto its image Clvi, and with cont. inverse $=\pi)$. Thus we can olefhe

$$
\varphi: \begin{aligned}
U \times k & \longrightarrow \pi^{-1}(U) \\
(x, k) & \longrightarrow \phi(x)^{k}
\end{aligned}
$$

that is continuous, bijective with inverse given by $\Phi^{\prime}: \pi^{-1}(U) \rightarrow U \times k$, $g \longmapsto(g p, \phi(g p) p)=\varphi^{-1} i \omega$ home between $\pi^{-1}(u) \geqslant I d$ and U×K. The smooth structure on G is given by the smooth shucture on translates of $\bar{T}^{\prime}(U)$. So, how do we define ϕ.
Let γ be a geodesic contained in U st. $f(0)=p \Rightarrow s_{\gamma(t / 2)} \circ s_{p}(p)=\gamma(t)$

U is a nomual noe of P, Mo $\phi=$ id $_{\text {lu }} . \Rightarrow \phi$ is ar Romeo soto its image (iii, and with cont. inverse $=\pi)$. Thus we can olefhe

$$
\begin{aligned}
\varphi: U_{x} & \longrightarrow \pi^{-1}(U) \\
(x, k) & \longmapsto \phi(x)^{k}
\end{aligned}
$$

that is continuous, bijective with inverse given by $\Phi^{\prime}: \pi^{(}(U) \rightarrow U \times k$, $g \longmapsto(g p, \phi(g p) p)=y \varphi^{-1}$ is ω homes between $\pi^{\prime}(U) \geqslant I d$ and UXK. The smooth stuecture on G is given by the smooth structure on translates of $\overline{V^{\prime}}(U)$. So, how do we define ϕ.
Le γ be a geodesic contained in U st. $\mathcal{f}(0)=p \Rightarrow s_{f(t / 2)} \cdot s_{p}(p)=\gamma(t)$

Sone concept of Lien. geom.
(Beothby, Do Canna)
M smooth info, $M: T M \rightarrow M$
A smooth v.f. is a section for

$$
x: M \rightarrow T M \text { st. } T_{0} X=\text { id. }
$$

$\operatorname{Vect}(M)=V-6$. on $M, \dot{n} a C^{\infty}(\mu)-\bmod$. with phase melttrpl. $=f \in C^{x}(\mu), x_{0 . f}$.

$$
(f \cdot x)_{p}=f(p) x_{p}
$$

If $f \in C^{p}(M), \quad d_{p} f: T_{p} M \rightarrow T_{f(p)} M$ is the $d t i$. Any $x \in \operatorname{Vect}(M)$ arts on $C^{\infty}(\mu)$

$$
\left(x_{f}\right)(p)=\left(d_{p f}\right)\left(x_{p}\right)
$$

Defy. A connection on M is a mas $\nabla: \operatorname{Vect}(M) \times \operatorname{Vect}(M) \longrightarrow \operatorname{Vect}(M)$ str.

Terminology let $I C \mathbb{R}$ be an interval. A map $f: I \rightarrow N$ into ar smooth mild is smooth if it the resh. If a smooth map defined on an open interval Contrinh I.
Defn. Let $\gamma: I \rightarrow M$ be smooth curve. A vector field along γ is a smooth mas
$X: I \rightarrow$ TM st.
$x(t) \in T_{\gamma(t)} M$ (not nee. g. to $\gamma!$.)

$\operatorname{Vect}\left(r^{*} T M\right)=$ vector Mace of vector fields along r.
(1) ∇ is $C^{\infty}(M)$-Linear in X

$$
\begin{aligned}
& \nabla_{f x+f^{\prime} x^{\prime}}(Y)=f \nabla_{x} \Gamma+f^{\prime} \nabla_{x^{\prime}} Y \\
& \forall x, x^{\prime}, \tau \in \operatorname{Vect}(M), f \in C^{x}(M)
\end{aligned}
$$

(2) ∇ is \mathbb{R}-linear in τ

$$
\begin{aligned}
& \nabla_{x}\left(a \tau+b \tau^{\prime}\right)=a \nabla_{x} \tau+b \nabla_{x} \tau^{\prime} \\
& \forall x, \tau, \tau^{\prime} \in \operatorname{Vect}(\zeta), a b \in \mathbb{R}
\end{aligned}
$$

(3) (Leibnitz rule)

$$
\begin{aligned}
\nabla_{x}\left(f Y+f^{\prime} \tau^{\prime}\right) & =f \nabla_{x} \tau+f^{\prime} \nabla_{x} \tau^{\prime} \\
+ & \underline{(X f) \zeta+\left(x f^{\prime}\right) \zeta^{\prime}}
\end{aligned}
$$

$X, Y . Y^{\prime} \in \operatorname{Vect}(M), f_{1} f^{\prime} \in C^{*}(M)$
Re ∇_{x} depends only on X_{p} but on Y in a hbo of l.
let $\gamma: \mathbb{R} \rightarrow M$ be a smooth curve and $X \in \operatorname{Vect}\left(\gamma^{*} T M\right)$.
$\nabla_{j(t)} x$ is the covariant derivative of x along y
Defn. let $x \in \operatorname{Vect}\left(\gamma^{*} T M\right)$ be av. 6. along a smooth curve γ. We ray that x is parallel if $\nabla_{j} x=0$.
Remark $\gamma \subset \mathbb{R}^{n}$ and $X \in \operatorname{Vect}\left(\gamma^{*}(1)\right.$ we can deconfore

$$
T \mathbb{R}^{n}=\mathbb{R} \dot{\gamma} \oplus(\mathbb{R} j)^{\perp}
$$

Then $\nabla_{\dot{\gamma}} X=p r_{(\mathbb{R} \dot{j})^{1}}\left(\frac{d X}{d t}\right)$

$$
\nabla_{j} X \equiv 0 \quad \text { even }
$$

though $\left|\frac{d x}{d t}\right| \equiv 1$

The same applies to the it. vector alan \sim great circle in $S^{n-1} \subset \mathbb{R}^{n}$, quametrsed by arcleugth. 'In fact goochics can be defined as cures γ sir. $\nabla_{\dot{\gamma}} \dot{\gamma} \equiv 0$
Rare: $Y \in \operatorname{Vect}(M)$ sir.

$$
\begin{aligned}
& \left(\nabla_{x} Y\right)_{p}=0 \quad G P \in M \\
& f X \in \operatorname{Vect}(M) .
\end{aligned}
$$

Proposition IT. 11 M dU. mfd, raM smooth curve - Given we $T_{\gamma(0)} M \quad \exists!$ vector field $x^{v} \in \operatorname{Vect}\left(\delta^{*} T M\right)$, parallel along γ, 2 socle that $X_{\gamma(\theta)}^{v}=v$.

$$
\sum_{\gamma(0)}^{2} \hat{\gamma}_{\gamma(t)}^{\gamma^{*}(t)}
$$

We can defrie the parallel transport along a curve γ from $\gamma(0)$ to $\gamma(t)$.

$$
\begin{gathered}
P_{\gamma,[0, t]:} T_{\gamma(0)} M \rightarrow T_{\gamma(t)} M \\
P_{r,[0, t]}(v):=x_{\gamma(t)}^{v} .
\end{gathered}
$$

Because of uniqueven

$$
P_{\gamma_{1}\left[t_{1}, t_{2}\right]}=P_{\gamma_{1}\left[t_{0}, t_{2}\right]}=P_{\gamma_{1}\left[t_{0}, t_{2}\right]}
$$

