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1. Introduction and motivation

1.1. Overview. We will review, through several examples, the general problem
of spectral decomposition, which may be summarized as follows: given a “natural”
Hilbert space H, find a “nice basis” (ej)j of H. A typical example of such a Hilbert
space is H = L2(X,µ) for some nice topological space X and some nice reference
measure µ. “Nice” typically refers to being an eigenfunction of some operator of
interest.

1.2. Fourier series. Consider the circle group

X = R/Z,

equipped with the Lebesgue measure µ. A “nice basis” (en)n∈Z for this space is
given by the complex exponentials

en(x) := e(nx), where e(x) := e2πix.

What do we mean by “basis”? The theory of Fourier series implies that the en
furnish a Hilbert space basis of

H = L2(X).

In other words, we have the direct sum decomposition

L2(X) = ⊕n∈ZCen
in the Hilbert sense, meaning that the summands are orthogonal and their sum is
dense.

What do we mean by “nice”? There are a couple natural meanings:
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• each en is an eigenfunction for the Laplacian ∆ = ∂xx:

∆en = −(2πn)2en.

• For x ∈ R/Z, let ρ(x) : H → H denote the “translation by x” map: for
v ∈ H,

ρ(x)v(y) := v(x+ y).

Then each en is an eigenfunction for each ρ(x):

ρ(x)en = e(nx)en,

as follows readily from the fact that en : R/Z → C× defines a homo-
morphism. Said another way, each en spans a one-dimensional, hence
irreducible, subrepresentation Cen ⊂ H for the regular representation
ρ : R/Z → GL(L2(R/Z)). Informally, each en transforms “as simply as
possible” under translation.

1.3. Equidistribution and Weyl’s criterion. Why care about “nice bases” as
in §1.2? One reason is that they provide a natural tool for equidistribution prob-
lems.

Definition 1.1. Let (X,µ) be a Borel probability space. We say that a sequence
(xj)j>1 in X equidistributes (with respect to µ) if for each ψ ∈ Cc(X), we have as
J →∞

1

J

J∑
1

ψ(xj)→
∫
X

ψ dµ. (1.1)

If a sequence equidistributes, then it is dense. This implication gives a powerful
tool for establishing the density of certain sequences.

Theorem 1.2 (Weyl’s criterion). Suppose that X = R/Z, equipped with Lebesgue
measure. The following are equivalent for all sequences (xj) in X:

(i) (xj) equidistributes
(ii) for each n ∈ Z, the convergence (1.1) holds for ψ = en, i.e.,

1

J

J∑
1

e(nxj)→
∫
R/Z

e(nx) dx =

{
1 if n = 0,

0 otherwise.
(1.2)

We note that the condition (1.2) is automatic when n = 0, so the main point in

applying this criterion is to estimate the sums
∑J

1 e(nxj) for n 6= 0.

Corollary 1.3. For α ∈ R − Q, the fractional parts [jα] ∈ R/Z (j = 1, 2, 3, . . . )
equidistribute: for each ψ ∈ Cc(R/Z),

1

J

J∑
1

ψ([jα])→
∫
R/Z

ψ(x) dx.

In particular, {[jα] : j = 1, 2, 3, . . . } is dense in R/Z.

Exercise 1.1. Let N be a large positive integer. Define f0 : Z/NZ→ C by

f0(0) := N, f0(x) := 0 for x 6= 0.

Define fn for n > 1 inductively by

fn+1(x) :=
fn(x− 1) + fn(x+ 1)

2
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Suppose that N is odd. Show that there exist positive constants c0, c1 (not depend-
ing upon N or n) so that∑

x∈Z/NZ

|fn(x)− 1|2 6 c0N4 exp(−c1n/N2).

Thus if n is a bit larger than N2, then fn is quite uniformly distributed. What
happens if n is even?

[Hints: Define ψ : Z/NZ→ U(1) by ψ(x) := e(x/N) = e2πix/N . For f : Z/NZ→
C, define the Fourier transform f̂ : Z/NZ→ C by

f̂(ξ) =
1

N

∑
x∈Z/NZ

f(x)ψ(−xξ),

so that the inversion formula

f(x) =
∑

ξ∈Z/NZ

f̂(ξ)ψ(xξ)

holds. Compute that f̂n(ξ) = cos(2πξ/N)n. For the estimation, it may be useful
to note that | cos(2πx/N)| 6 1 − c1/N2 6 exp(−c1/N2) for some constant c1 > 0
whenever x is an integer with 2x 6= N .]

1.4. Fourier transform. We briefly describe the main examples of Fourier analy-
sis on non-compact abelian groups. (The general picture is described by Pontryagin
duality.)

Example 1.4. Let G = R, regarded as the additive group. A Schwartz function v on
R has a Fourier transform v∧(ξ) :=

∫
x∈R v(x)e(−ξx) dx, which satisfies the Fourier

inversion formula v =
∫
ξ∈R v

∧(ξ)eξ dξ, where eξ(x) := e(ξx). Remarks:

(1) The eξ are eigenfunctions of ∆ = ∂xx, with eigenvalues −(2πξ)2.
(2) The eξ are eigenfunctions under the translation operators ρ(x), defined as

above, with eigenvalues given by ρ(x)eξ = e(ξx)eξ.
(3) We have eξ /∈ L2(R).
(4) The eigenfunctions eξ come in continuous families indexed by ξ ∈ R (unlike

the discrete families encountered in the R/Z case).
(5) We have the Parseval identity for L2(R):

〈v1, v2〉 =

∫
ξ∈R
〈v1, eξ〉〈eξ, v2〉 dξ.

A convenient way to summarize some of the properties noted above is through
the language of direct integrals of Hilbert spaces: we have L2(R/Z) = ⊕n∈ZCen
(Hilbert direct sum) but L2(R) =

∮
ξ∈R Ceξ dξ (Hilbert direct integral).

Example 1.5. The multiplicative group G = R× is isomorphic to R×+ × {±1}, and

R×+ ∼= R via the logarithm map. Thus the discussion for R applies also to R×,
where it is usually formulated in the language of Mellin transforms.

1.5. The space of lattices.

Definition 1.6. A lattice L ⊆ Rn is a subgroup of the form L = ⊕ni=1Zvi for some
basis v1, . . . , vn of Rn.
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For example, there is the standard lattice Zn ⊆ Rn generated by the standard
basis elements e1, . . . , en.

We denote by Xn the space of lattices in Rn.
We regard Rn as a space of row vectors. The group GLn(R) acts on Rn by right

matrix multiplication: (v, g) 7→ vg. This induces an action on the space Xn of
lattices. The stabilizer of the standard lattice Zn is the group GLn(Z), so we may
identify

Xn = GLn(Z)\GLn(R)

Zng ↔ GLn(Z)g.

We equip Xn with the quotient topology coming from the surjective map
(v1, . . . , vn) 7→ Xn sending an ordered basis for Rn to the lattice it gener-
ates, or equivalently, with the quotient topology coming from the surjective map
GLn(R) → GLn(Z)\GLn(R). Thus a sequence L(j) of lattices converge to L if

there are bases v
(j)
1 , . . . , v

(j)
n of L(j) and v1, . . . , vn of L so that v

(j)
i → vi.

Definition 1.7. We say that a lattice L ∈ Xn is unimodular if vol(Rn/L) = 1.

We denote by X
(1)
n ⊆ Xn the space of unimodular lattices. A lattice L is

unimodular if and only if it may be written L = Zng for some g ∈ SLn(R). Thus
we may identify

X(1)
n = SLn(Z)\ SLn(R).

The group R× acts on the space of lattices by scaling. Scaling a lattice by t
multiplies the volume by |t|n. We may thus identify

Xn/R× ∼= X(1)
n .

Here the LHS consists of scaling classes of lattices, while the RHS consists of uni-
modular lattices; the bijection assigns to each scaling class the unique unimodular
representative.

One advantage of working with the space X
(1)
n of unimodular lattices rather than

the larger space Xn of all lattices is that X
(1)
n admits a (unique) SLn(R)-invariant

probability measure. (We will verify this fact soon.) We may thus meaningfully
speak of a “random unimodular lattice.”

Many problems in number theory, Diophantine analysis, . . . may be recast in
terms of the space of lattices. We record a typical example:

Example 1.8. The Littlewood conjecture asserts that for all real numbers α and β,

lim inf
n→∞

n‖nα‖‖nβ‖ = 0,

where ‖x‖ denotes the distance from x to the closest integer.
Let A 6 SL3(R) denote the diagonal subgroup. It is known that the Littlewood

conjecture would follow from the following conjectural implication concerning lat-

tices L ∈ X(1)
3 : if the orbit LA ⊆ X(1)

3 is precompact, then that orbit is closed.
The basic idea underlying the the relationship between these two statements

is that n‖nα‖‖nβ‖ is the smallest number of the form n(nα + m)(nβ + `). Such
numbers are values taken by the trilinear form (x, y, z) 7→ xyz on the lattice Lαβ
generated by (1, 0, 0), (α, 1, 0), (β, 0, 1). The group A stabilizes that trilinear form.
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1.6. Goals for the course. The main goal is to describe “nice bases” for the

spaces of functions on the spaces of Xn and X
(1)
n . Here

• “nice” may be characterized by analogy to what happened for L2(R/Z),
either in terms of eigenfunctions of certain differential operators or irre-
ducibility under the action of the groups GLn(R) or SLn(R), and
• “basis” refers to some mixture of what happened for L2(R/Z) (discrete

decomposition) and L2(R) (continuous decomposition).

One of the main tools for doing so is the Eisenstein series construction, which
consists of a way to produce functions on Xn from functions on simpler spaces
(e.g., Xm for smaller m).

Example 1.9. Let f ∈ Cc(Rn). By summing f over vectors in a given lattice, we
obtain a function Eis[f ] : Xn → C:

Eis[f ](L) :=
∑
v∈L

f(v).

(Many variants of this definition are possible: summing only over nonzero vectors,
summing only over primitive vectors, etc.) In this way functions on the simpler
space Rn may be used to construct functions on the space Xn.

Example 1.10. Write n = n1+n2. Let Xn1,n2 denote the space of triple (V1, L1, L2),
where

• V1 is an n1-dimensional subspace of Rn,
• L1 is a lattice in V1, and
• L2 is a lattice in V/V1.

We may regard Xn1,n2
as a twisted product of the Grassmannian of n1-dimensional

subspaces of Rn and the space Xn1
×Xn2

of pairs of lattices in Rn1 and Rn2 .
Let L ∈ Xn be a lattice. Let L1 ⊆ L be a submodule of rank n1, thus L1

∼= Zn1 .
We say that L1 is primitive if it admits a complement, i.e., if there is a submodule
L2 ⊆ L (of rank n2) so that L = L1 ⊕ L2.

Given f ∈ Cc(Xn1,n2
), we may define Eis[f ] : Xn → C by

Eis[f ](L) :=
∑
L1

f(spanR(L1), L1, L2),

where the sum is taken over primitive rank n1 submodules L1 of L, with L2 as
above.

In this special case n1 = 1, this construction generalizes one of the variants
mentioned in Example 1.9.

We will explain how, e.g., L2(X
(1)
n ) decomposes into

• a space spanned by Eisenstein series as above attached to functions on
spaces like Xn1,n2

, and
• its orthogonal complement, called the cuspidal subspace.

The cuspidal subspace decomposes like L2(R/Z) does, while the Eisenstein space
may be described in terms of the cuspidal subspaces for smaller Xm’s.

These notes will likely be incomplete, and in particular short on the history; we
refer to any of the course references for details.
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2. Basics on the space of lattices

We continue to regard Rn as a space of row vectors.

References. Some expositions are Borel [3], Morris [10], and Platonov–Rapinchuk
[11], while historical references include Siegel [12] and Borel–Harish-Chandra [4, 5].

2.1. Module-theoretic preliminaries. (Not presented in lecture.) Here we
summarize some standard facts from abstract algebra and their consequences, to
be used implicitly in what follows. (The proofs, omitted here, boil down to the fact
that any n-tuple (a1, . . . , an) ∈ Zn of integers with relatively prime entries extends
to a basis of Zn, or equivalently, arises as the top row of some element of GLn(Z).
The proof of the latter fact is a good exercise.)

First, the standard facts, which hold more generally with Z replaced by any
principal ideal domain:

Theorem 2.1. A submodule M of a free Z-module L is free, with the rank of M
at most that of L.

Theorem 2.2. A finitely-generated torsion-free Z-module is free.

Next, the consequences. Let L be a finitely-generated free Z-module.

Definition 2.3. A submodule M of L is called primitive if QM ∩L = ZM ; here QM
and ZM denote the respective spans under Q and Z of M inside L⊗Z Q. A vector
v ∈ L is called primitive if it generates a primitive submodule, or equivalently, if
Qv ∩ L = Zv.

Lemma 2.4. The following are equivalent for a submodule M ⊆ L:

(i) M is primitive.
(ii) L/M is torsion-free.

(iii) L/M is free.
(iv) M admits a complement, i.e., a submodule M ′ of L for which L = M ⊕M ′.

Proof. The equivalence of (i) and (ii) follows readily from the definition, while that
of (ii) and (iii) follows from Theorem 2.2. (iv) implies (iii) because M ′ is free, while
(iii) implies (iv) because the lift to L of any basis for L/M generates the required
complement. �

In particular, we may construct a basis for L by iterated application of the lemma,
as follows. We inductively construct v1, . . . , vn so that for each k ∈ {1, . . . , n}, the
module 〈v1, . . . , vk〉 is primitive. First, we choose any primitive vector v1 ∈ L.
Clearly 〈v1〉 is primitive. For k > 2, we choose any vk ∈ L whose image in the free
module L/〈v1, . . . , vk−1〉 is primitive. By induction on k, we see that 〈v1, . . . , vk〉
is primitive. The construction stops at k = n with 〈v1, . . . , vn〉 = L.

Exercise 2.1. Let M be a submodule of L. Write m and n for the respective ranks
of M and L. Choose a basis of L, so that we may identify L with Zn and speak of
coordinates. Let v1, . . . , vm ∈ Zn be a basis of M . Let A denote the m× n matrix
with rows v1, . . . , vm. Show that M is primitive if and only if the greatest common
divisors of the maximal minors of A is one.
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2.2. The two-dimensional case. Let L ⊆ R2 be a lattice. Choose a nonzero
lattice vector v2 of minimal length. By rotating and scaling the lattice, we may
assume that v2 = (1, 0) and that all other vectors have length > 1. Note that v2

is primitive, i.e., L ∩ Rv2 = Zv2, as we would otherwise have v2/N ∈ L, contrary
to the minimality of the length of v2. Choose a vector v1 ∈ L − Zv1 of shortest
length. Write v1 = (x, y). By replacing v1 with its negative, we may assume that
y > 0. Then ‖v1‖ > 1. Also, −1/2 6 x 6 1/2, as otherwise we could translate v1

by a multiple of v2 to produce a shorter vector.
Thus we may classify lattices in R2 up to scaling and rotation by points (x, y)

with y > 0, −1/2 6 x 6 1/2 and x2 + y2 > 1. (There is some mild ambiguity in
this description when (x, y) lies on the “boundary.”) We obtain the picture of the
standard fundamental domain of the modular group SL2(Z).

2.3. Iwasawa decomposition. Let v1, . . . , vn be a basis for Rn. There is a unique
orthogonal basis v′1, . . . , v

′
n so that

vi = v′i +
∑
j<i

xijv
′
j

for some scalars xij . Indeed, we are forced to take for v′m the orthogonal projection
of vm onto 〈vm+1, . . . , vn〉⊥, which may be constructed explicitly using the Gram–
Schmidt procedure. Said another way, one has the matrix identity

v1

v2

· · ·
vn−1

vn

 =



1 x12 x13 · · · x1,n

1 x23
. . .

...
. . . xn−2,n−1 xn−2,n

1 xn−1,n

1




v′1
v′2
· · ·
v′n−1

v′n


where each entry xij is uniquely determined.

Set aj := |v′j | > 0, so that v′j = ajv
′′
j where v′′j is a unit vector. Then we have

the matrix identity
v1

v2

· · ·
vn−1

vn

 =



1 x12 x13 · · · x1,n

1 x23
. . .

...
. . . xn−2,n−1 xn−2,n

1 xn−1,n

1




a1

a2

. . .

an−1

an




v′′1
v′′2
· · ·
v′′n−1

v′′n

 .

The rows of the rightmost matrix are orthogonal, and so that matrix lies in the
orthogonal group O(n).

This way of describing a basis may be interpreted group-theoretically. Ordered
bases as above correspond to elements of G := GLn(R), with (v1, . . . , vn) corre-
sponding to the element g having jth row vj , or equivalently, for which ejg = vj .
Denote by N the group of strictly upper-triangular matrices, A+ the group of diago-
nal matrices with positive entries, and K = O(n). Then every g ∈ G may be written
uniquely as g = xak with x ∈ N, a ∈ A+, k ∈ K. Symbolically, G = NA+K, and
the map N × A+ × K → G is a diffeomorphism. This is known as the Iwasawa
decomposition.
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2.4. Reduced bases and Siegel domains. Let L ⊆ Rn be a lattice. Then L
admits many different ordered bases.

Definition 2.5. We call an ordered basis v1, . . . , vn of Rn reduced if, in Iwasawa
coordinates as above,

• |xij | 6 1/2 for 1 6 i < j 6 n, and

• aj/aj+1 >
√

3/2 for 1 6 j < n.

What matters in this definition is that 1/2 < ∞ and
√

3/2 > 0 are fixed; the
precise numerical values will not be of much significance for us.

We summarize some of the basic facts concerning reduced bases of lattices, due to
Minkowski and Siegel. In what follows the notation A� B signifies that |A| 6 C|B|
where C depends only upon n, while A � B means that A� B � A.

Theorem 2.6. Let L ⊆ Rn be a lattice.

(i) There is at least one reduced basis.
(ii) Let v1, . . . , vn be any reduced basis, with accompanying notation as above. Let

T be the linear transformation sending v′i to vi. Then T and its inverse have
operator norm � 1; equivalently, for all c = (c1, . . . , cn) ∈ Rn, we have

‖
∑

civi‖ � ‖
∑

civ
′
i‖ � max

16i6n
ai|ci|. (2.1)

In particular, |vi| � |v′i| = ai.
(iii) If v1, . . . , vn and w1, . . . , wn are two reduced bases, then |v′i| � |w′i|. Thus the

Iwasawa coordinates ai of a lattice are “well-defined up to constants depending
only upon n.”

(iv) Let C > 1 be large enough in terms of n. Suppose that v1, . . . , vn is a reduced
basis. Let i ∈ {1, . . . , n− 1}. Suppose that

ai/ai+1 > C.

Then the Z-module

〈vi+1, . . . , vn〉
depends only upon L, not upon the choice of reduced basis.

(v) Let v1, . . . , vn and w1, . . . , wn be reduced bases of the same lattice. Let γ ∈
GLn(Z) be the change of basis matrix relating the two bases, thus

wi =
∑
j

γijvj .

Then each entry γij is � 1.

Proof. We start with part (i).
Let vn ∈ L be a shortest vector (i.e., a nonzero vector of minimal length). Such

a vector exists in view of the discreteness of L, and is necessarily primitive. By
definition, v′n = vn.

Let Ln−1 denote the image of L under orthogonal projection to v⊥n ; it is a
lattice of rank n − 1. Let v′n−1 ∈ Ln−1 be a shortest vector (which exists, as
Ln−1 is again discrete). Lift it to a vector vn−1 ∈ L of shortest length. This lift
is primitive. (The superscripted “prime” notation is consistent: by construction,
v′n−1 is the orthogonal projection of vn−1 to 〈vn〉⊥.) By the n = 2 discussion, we

have |v′n−1| >
√

3
2 |v

′
n|.
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Next, let Ln−2 denote the orthogonal projection of L to 〈vn−1, vn〉⊥, let v′n−2 ∈
Ln−2 be a shortest vector, and let vn−2 ∈ L be any lift (necessarily primitive).
Then

vn−2 = v′n−2 + av′n−1 + bv′n

for some real numbers a and b. (We have used here that 〈vn−1, vn〉R = 〈v′n−1, v
′
n〉R.)

We are free to translate vn−2 by any integral multiple of vn−1 or vn. Adjusting first
by vn−1, we may arrange that |a| 6 1/2. Adjusting further by vn, we may arrange
further that |b| 6 1/2. We observe now that u := v′n−2 + av′n−1 is the orthogonal
projection of vn−2 to Ln−1. By the minimality of v′n−1, we have

|v′n−1|2 6 |u|2 = |v′n−2|2 + a2|v′n−1|2.

Using that |a| 6 1/2, it follows readily that |v′n−2| >
√

3
2 |v

′
n−1|.

Continuing in this way, we obtain the desired reduced basis.
We turn to part (ii). By definition, v′iT = vi = v′i +

∑
j>i xijv

′
j . Let us

express this relation in terms of the orthonormal basis {v′′i }:

v′′i T = v′′i +
∑
j>i

xij
aj
ai
v′′j .

Thus in this basis, the matrix of T is strictly upper-triangular, with each entry
� 1. The same is then true for the inverse of T . By computing ‖v‖ and ‖Tv‖ with
respect to {v′′i }, we deduce the desired estimate.

We turn to part (iii). Let v1, . . . , vn and w1, . . . , wn be reduced bases. By (ii)
and symmetry, it is enough to show that for each k ∈ {1, . . . , n},

|wk| � |vk|.

To that end, write wi =
∑
j cijvj for some integers cij . Since the vectors wk, . . . , wn

are linearly independent, they cannot all be contained in the span of the vectors
vk+1, . . . , vn. We may thus find ` ∈ {k, . . . , n} and m ∈ {1, . . . , k} so that c`m 6= 0.
By (2.1) and the integrality of c`m, we then have

|wk| >

(√
3

2

)`−k
|w`| � |w`| � max

j
|c`jv′j | � |v′m| >

(√
3

2

)k−j
|vk| � |vk|,

as required.
We turn to part (iv). Let v1, . . . , vn and w1, . . . , wn be reduced bases. Suppose

that

〈vi+1, . . . , vn〉 6= 〈wi+1, . . . , wn〉. (2.2)

Without loss of generality, suppose more precisely that wj /∈ 〈vi+1, . . . , vn〉 for some
j ∈ {i+ 1, . . . ,m}. We may write wj =

∑
k ckvk with ck ∈ Z. By hypothesis, there

exists k ∈ {1, . . . , i} with ck 6= 0. By (2.1) and part (iii), we have

ai+1 � |wi+1| � |wj | � |vk| � |vi| � |wi| � ai.

Thus there exists C > 1, depending only upon n, so that ai+1/ai 6 C whenever
(2.2) holds. Taking contrapositives, we obtain the required implication.

We turn, finally, to part (v).
Let ai = |v′i| denote the Iwasawa coordinates of the first reduced basis. By part

(iii), they are approximately those of the second basis: ai � |w′i|. By part (ii), we
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have ai � |wi| �
∑
j aj |γij |. In particular, there is a constant C, depending only

upon n, so that

|γij | 6 Cai/aj . (2.3)

A key observation (implicit already in the proof of (iv)) is that if aj/ai > C,
then Cai/aj < 1. Since γ has integral entries, this forces γij = 0. This feature
motivates that our argument will depend upon how far apart the neighboring ai’s
are from one another.

Recall that a1 � · · · � an.
Consider first the case that all ai are roughly of the same size:

a1 � · · · � an.

Then (2.3) implies that each γij � 1, which was the desired conclusion.
Suppose next that, for some m ∈ {1, . . . , n}, the numbers a1, . . . , am are all of

the same size, as are the numbers am+1, . . . , an, but those in the first group are
significantly larger than those in the second:

a1 � · · · � am, am+1 � · · · � an, ai/aj > C for i 6 m, j > m. (2.4)

Then (2.3) implies that

• γij � 1 whenever i, j are both 6 m or both > m, and
• γij = 0 whenever i > m and j 6 m,

but does not immediately usefully constrain the remaining variables γij for i 6
m, j > m. We may in any event write γ in block-diagonal form as

γ =

(
Γ11 Γ12

0 Γ22

)
where Γ11 ∈ GLm(Z) and Γ22 ∈ GLn−m(Z) have entries � 1. Note that the
inverses of these last matrices are also of size � 1, in view of Cramer’s rule and
the fact that det(Γii) = ±1. Our remaining task is to estimate the entries of the
m× (n−m) matrix Γ12; we wish to show that those entries are � 1.

To that end, let g ∈ GLn(R) denote the matrix with rows ejg = vj . Then
γg has rows ejγg = wj . The Iwasawa decomposition of g reads g = xak where
|xij | 6 1/2, a = diag(a1, . . . , an) and k ∈ O(n). The Iwasawa decomposition of γg
satisfies similar bounds. We wish to combine the known bounds on g and γg to
constrain Γ12. To that end, it is convenient to write the Iwasawa components in
block-diagonal form, like for γ. First, write

x =

(
U11 U12

0 U22

)
,

where U11, U22 are strictly upper-triangular. Next, taking into account that the
numbers a1, . . . , am and also am+1, . . . , an are of similar size, we write

diag(a1, . . . , am) = A1M1,

A1 := diag(a1, . . . , a1), M1 := diag(a1/a1, a2/a1, . . . , am/a1)

and

diag(am+1, . . . , an) = A2M2,

A2 = diag(an, . . . , an), M1 = diag(am+1/an, . . . , an−1/an, an/an),
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say. The precise choice of the scalar matrices A1, A2 is unimportant; what matters
is just that each entry of M1 or M2 has size � 1. Thus

g =

(
U11 U12

0 U22

)(
A1M1 0

0 A2M2

)
k.

After a bit of matrix multiplication, we find that

γg =

(
1 B
0 1

)(
Γ11U11M1A1 0

0 Γ22U22M2A2

)
k,

where

B := Γ12Γ−1
22 + Γ11U12U

−1
22 Γ−1

22 .

Since the matrices Γ11,Γ22, U12, U22 and their inverses are of size � 1, our goal of
showing that Γ12 is of size � 1 will be achieved if we can verify that B is of size
� 1.

To that end, we compute the Iwasawa decomposition of γg. Note that the
matrices ΓiiUiMi and their inverses are each of size � 1, so the same holds for
their Iwasawa components, say ΓiiUiMi = u(i)a(i)k(i). The Iwasawa decomposition
of γg thus reads

γg = u′
(
a(1)A1 0

0 a(2)A2

)(
k(1)

k(2)

)
k,

where

u′ =

(
u(1) Bu(2)

0 u(2)

)
.

Since the basis w1, . . . , wn is reduced, we know that the individual above-diagonal
entries of u′ are of size at most 1/2. Since u(1), u(2) and their inverses are of size
� 1, it follows that B is likewise of size � 1, as required.

This completes the proof in the special case (2.4). The general case is similar.
We may write n = α1 + · · · + αr in such a way that, setting n0 := 0 and nk :=
α1 + · · ·+ αk, we have

• ai � aj whenever i, j lie in the same segment, i.e., nk−1 < i, j 6 nk for
some k, and

• ai/aj > C whenever i > j and i, j lie in distinct segments.

We then write our matrices in terms of r × r blocks and argue as above. �

Definition 2.7. Let S denote the set of all g ∈ GLn(R) for which the corresponding
basis e1g, . . . , eng of Rn is reduced. Thus S consists of those g whose Iwasawa
coordinates g = xak ∈ N ×A+×K satisfy |xij | 6 1/2 (i < j) and ai/ai+1 >

√
3/2.

Theorem 2.8. We have

GLn(Z)S = GLn(R). (2.5)

Moreover,

#{γ ∈ GLn(Z) : γS ∩S 6= ∅} <∞. (2.6)

Proof. We apply Theorem 2.6.
Part (i) implies (2.5). Indeed, let g ∈ GLn(R). Let Zng denote the corresponding

lattice, with basis e1g, . . . , eng given by the rows of g. Choose a reduced basis
v1, . . . , vn of g. Let γ ∈ GLn(Z) denote the corresponding change of basis matrix,
characterized by vi =

∑
j γijejg = eiγg. Then γg ∈ S, as required.
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Part (v) implies (2.6). Indeed, suppose γ ∈ Γ satisfies γg ∈ S for some g ∈ S.
Let v1, . . . , vn and w1, . . . , wn denote the rows of γ and γg, respectively. These
define reduced bases of the same lattice Zng. The hypotheses for part (v) are thus
satisfied, and we obtain |γij | 6 C where C depends only upon n. The set of integral
matrices satisfying this last condition is finite. �

We call S the standard Siegel domain for GLn(Z). It contains a fundamental
domain for GLn(Z)\GLn(R), but is “not much bigger” than a fundamental domain
in the sense quantified by the above results. The same results apply to the larger
domains defined like S, but with 1/2 replaced by something larger and

√
3/2 by

something smaller.
There are obvious analogues of Definition 2.7 and Theorem 2.8 for SLn(R).
For future reference, we introduce the following terminology.

Definition 2.9. Let G = GLn(R) or SLn(R). Write G = NAK for its Iwasawa
decomposition, where now A consists of diagonal elements with positive entries. A
Siegel domain for G is a subset of the form S = ωAtK, where ω ⊆ N is compact
and AT := {a ∈ A : ai/ai+1 > t}.

The examples above arise by taking ω = {u ∈ N : |uij | 6 B for all i < j}.

Exercise 2.2. Adapt the proof of Theorem 2.6 to show that any discrete sub-
group Λ ⊆ Rn is of the form Λ = ⊕mi=1Zvi for some linearly independent subset
{v1, . . . , vm} ⊆ Rn. Deduce that the following conditions on a subgroup Λ ⊆ Rn
are equivalent.

(i) Λ is a lattice in the sense defined earlier (i.e., it is the Z-module generated by
some R-basis of Rn).

(ii) Λ is discrete and cocompact.

Exercise 2.3 (Minkowski’s theorem). Let L be a lattice with reduced basis
v1, . . . , vn. As usual, set ai = |v′i|.

(i) Show that vol(Rn/L) � a1 · · · an,
(ii) Show that L contains a nonzero vector of length � vol(Rn/L)1/n.

Exercise 2.4. Give an explicit example of a lattice L ⊆ R2 with reduced bases v1, v2

and w1, w2 so that v1, v2 is not a permutation of ±w1,±w2 for any combination of
signs.

Exercise 2.5 (Mahler’s theorem). Let L be a lattice. The successive minima of L
are the numbers M1 6 · · · 6 Mn described as follows: Mk is the smallest positive
real for which L contains a k-element linearly independent subset {w1, . . . , wk}
with each |wi| 6 Mk. Show that for any reduced basis v1, . . . , vn of L, we have
Mk � an−k+1, where as usual ak = |v′k|.

Exercise 2.6 (Mahler compactness criterion). Let S be a subset of the space of
unimodular lattices. Show that the following are equivalent.

(i) S is precompact.
(ii) There exists δ > 0 so |v| > δ for all 0 6= v ∈ L ∈ S.

2.5. Haar measure. For a summary with references, see [1, §2.9].
On any locally compact group G, there is a unique (up to scaling) measure dLg

(resp. dRg) onG invariant under left (resp. right) translation byG. These are called
left (resp. right) Haar measures. If G is a Lie group and ωL is a nonzero volume
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form invariant under left translation, then one may construct such a Haar measure
explicitly by

∫
f(g) dLg =

∫
f · ωL (and similarly with “left” replaced by “right”).

The left and right Haar measures are related (up to scaling) by dRg = δ(g) dLg,
where δ : G→ R×+ is the continuous homomorphism given by the magnitude of the
determinant of the adjoint representation:

δ(g) := |det Ad(g)|, Ad : G→ GL(g).

We call δ the modulus character of G.
We call G unimodular if δ is trivial, i.e., δ(g) = 1 for all g ∈ G; in that case, we

may take dLg = dRg and speak unambiguously of a (left and right) Haar measure
dg.

Example 2.10. Any abelian group is unimodular. In particular,

• the additive group G = R is unimodular, with a Haar measure given by the
Lebesgue measure dx, and
• the multiplicative group G = R× is unimodular, with a Haar measure is

given by d×x := dx
|x| .

Example 2.11. Any nilpotent Lie group is unimodular: the adjoint representation
admits a basis with respect to which it is strictly upper-triangular, hence has de-
terminant one.

Example 2.12. Any compact group G is unimodular. Indeed, since δ : G → R×+
defines a continuous homomorphism and G is compact, the image of δ is a compact
subgroup of R×+, but the only such subgroup is {1}. Compact groups are moreover
of finite volume, so they admit a unique probability Haar measure.

Example 2.13. SLn(R), GLn(R) and, more generally, all reductive algebraic groups
G are unimodular. Indeed, the adjoint determinant is identically one. One can see
this directly in these examples using the Iwasawa decomposition and the preceding
examples. Alternatively, it suffices to check this at the level of complex points (e.g.,
for GLn(C)), in which case it follows from the fact that G possesses a Zariski dense
compact subgroup K (e.g., U(n)); Example 2.12 implies that δ is trivial on K,
hence also on G.

Example 2.14. The two-dimensional affine groupB =

{
b =

(
y x
0 1

)
: x ∈ R, y ∈ R×

}
is not unimodular; we have δ(b) = |y| and may take

dLb =
dx dy

|y|2
, dRb =

dx dy

|y|
.

Example 2.15. Consider the group B = NA of upper-triangular matrices in
GLn(R). A Haar measure on N is given by the product of Lebesgue measures in co-
ordinates: dx =

∏
i<j dxij . A Haar measure on A is given by da =

∏
i d
×ai, where

as before d×x := dx
|x| denotes the Haar measure on the multiplicative group. The

modulus character is given by δ(xa) =
∏
i<j ai/aj , since for z = (zij)i6j ∈ Lie(B)

we have Ad(xa)z = (aia
−1
j zij)i6j . As left and right Haar measures on B, we may

take

dR(xa) = dx da, dL(xa) = dx
da

δ(a)
.
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Example 2.16. Let G = GLn(R), let B = NA be as above, and let K = O(n).
Then a Haar measure dg on G is given by∫

G

f(g) dg =

∫
b∈B

∫
k∈K

f(bk) dLb dk,

where dLb is a left Haar measure on B (as described above) and dk is a Haar
measure on K.

To see this, observe first that the RHS defines a measure µ on G. Using that
the map B × K → G has surjective differential (as observed in our discussion of
the Iwasawa decomposition), we see that µ is absolutely continuous with respect to
any Haar measure dg on G, say µ = αdg for some function α on G. The invariance
properties of dLb and dk imply that α is left B-invariant and right K-invariant,
hence α(bk) = α(1) for all (b, k) ∈ B × K. Since BK = G, it follows that α is
constant.

We might as well take dLb as in Example 2.15 and dk as in Example 2.12.

Example 2.17. A Haar measure on G = SLn(R) may be constructed similarly;
we take k ∈ SO(n), restrict to a with a1 · · · an = 1, and omit the factor d×an.
Explicitly, we may take∫

G

f =

∫
x∈N

∫
a1,...,an>0:
a1···an=1

∫
k∈K

f(xak) dx
da

δ(a)
dk, da =

da1

a1
· · · dan−1

an−1
. (2.7)

Given a locally group G and a closed subgroup H, both unimodular and equipped
with Haar measures dg and dh, the quotient space G/H admits a unique G-invariant
quotient measure dḡ for which dg = d ḡ · dh; this last identity means that for any
f ∈ Cc(G), ∫

G

f(g) dg =

∫
G/H

(f(ḡh) dh) dḡ.

Similar considerations apply to H\G. We will refer to such quotient measures
simply as Haar measures.

In particular, for any choices of Haar measures on SLn(R) and GLn(R), we
obtain quotient measures on SLn(Z)\ SLn(R), GLn(Z)\GLn(R); here the discrete
subgroups SLn(Z) and GLn(Z) are equipped with counting measure.

Exercise 2.7. Let µ be a Haar measure on SL2(Z)\SL2(R). Show that there exists
c > 0 with the following property. Let f ∈ Cc(SL2(Z)\SL2(R)). Suppose that
f is right-invariant under SO(2), so that it may be identified with a function ϕ :
SL2(Z)\H→ C. Then∫

SL2(Z)\ SL2(R)

f dµ = c

∫
SL2(Z)\H

ϕ(x+ iy)
dx dy

y2
. (2.8)

2.6. Finiteness of the volume.

Theorem 2.18. The quotient SLn(Z)\ SLn(R) has finite volume with respect to
any Haar measure.

Proof. Let S ⊆ SLn(R) denote the standard Siegel domain, defined as in Definition
2.7. By Theorem 2.8, it is enough to verify that S has finite volume with respect
to the given Haar measure. Since all Haar measures are multiples of one another,
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it doesn’t matter which we work with, so let’s use the Haar measure given by (2.7).
The volume of S with respect to this measure is∫

a1···an=1,

ai/ai+1>
√

3/2

da

δ(a)
, (2.9)

so our task is to verify that this last integral converges absolutely.
We introduce the change of variables

y1 = a1/a2, y2 = a2/a3, . . . , yn−1 = an−1/an.

We can recover the ai’s from the yj ’s and an: for 1 6 i 6 n− 1,

ai = yiyi+1 · · · yn−1an.

We can determine an by calculating

1 = a1a2 · · · an = (y1 · · · yn−1an)(y2 · · · yn−1an) · · · an = y1y
2
2y

3
3 · · · yn−1

n−1a
n
n,

from which we deduce that
an =

∏
i

y
i/n
i . (2.10)

Up to the constant factor coming from the Jacobian of the change of variables
(ai) 7→ (yj), we may rewrite the integral (2.9) as∫ ∞

y1,...,yn−1=
√

3/2

1

δ(a(y))
d×y1 · · · d×yn−1, (2.11)

where

δ(a(y)) :=


y1 · · · yn−1an

y2 · · · yn−1an
· · ·

yn−1an
an,


where an is defined as in (2.10), so that det(a(y)) = 1. The point is now just that
we may write

δ(a(y)) = yβ1

1 · · · y
βn−1

n−1

for some positive real numbers β1, . . . , βn−1, given explicitly by

βj = j(n− j). (2.12)

To see his, note that for x = (xij)i6j ∈ g = Lie(B), we have Ad(a(y))x =
(yi · · · yj−1xij)i6j . For example, when n = 3,

Ad(a(y))x =


x11 y1x12 y1y2x13 y1y2y3x14

0 x22 y2x23 y2y3x24

0 0 x33 y3x34

0 0 0 x44

 .

The matrix of eigenvalues of Ad(a(y))|Lie(B) is thus given by
1 y1 y1y2 y1y2y3

1 y2 y2y3

1 y3

1

 .

The appearances of yj form a square of dimensions j × (n − j), whence the claim
(2.12).
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Since
∫
√

3/2
y−β dy

y < ∞ for each β > 0, it follows that the integral (2.11)

converges absolutely, as required. �

2.7. How many vectors does a random lattice have in a given region?
Let EL denote an integral over unimodular lattices L respect to the probability

Haar measure on X
(1)
n = SLn(Z)\SLn(R) (E stands for “expectation”).

As further illustration of the content of this section, we sketch a proof of the
following theorem of Siegel.

Theorem 2.19. Let Ω be a bounded open subset of Rn with 0 /∈ Ω. Then

EL|L ∩ Ω| = vol(Ω),

where the volume of Ω is computing using the usual Lebesgue measure. In words,
for a random unimodular lattice, the expected number of lattice points in Ω is given
by its volume.

It is not a priori obvious that the expectation in question is finite, in view of
the following simple exercise.

Exercise 2.8. Assume n > 2. Show that for each nonempty open Ω ⊆ Rn and
N > 0, there is a unimodular lattice L with |L ∩ Ω| > N .

The proof requires a couple lemmas. First, we give some basic estimates and
check that the integral converges. For R > 0, let BR ⊆ Rn denote the ball of radius
R.

Lemma 2.20. Let L ⊆ Rn. Choose a reduced basis, hence Iwasawa coordinates

a1 � · · · � an (2.13)

as usual. Then

|L ∩BR| − 1� R

an
+

R2

anan−1
+ · · ·+ Rn

an · · · a1
. (2.14)

Proof. The LHS counts the number of nonzero lattice vectors of size at most R.
Let v1, . . . , vn be a reduced basis. Any nonzero element of L may be written x =∑
xivi where the xi are integers, not all zero. By the estimate (2.1), we have

|x| � max16i6n ai|xi|. Thus, after enlarging R by a constant multiple, our task is
to estimate

|{0 6= x ∈ Zn : max
16i6n

ai|xi| 6 R}|.

The number of possibilities for xi is at most 1+R/ai, so the number of possibilities
for x (excluding x = 0) is

n∏
i=1

(
1 +

R

ai

)
− 1.

We expand out the product and note that, thanks to (2.13), each term in the
expansion is majorized by a corresponding term in (2.14). We are done. �

Lemma 2.21. We have

EL(|L ∩BR| − 1)� R+Rn.

In particular, the indicated expectation is finite.
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Proof. It suffices to bound the corresponding integral taken over the standard Siegel
domain. By lemma 2.20, we reduce to verifying for each 0 6 m 6 n− 1 that∫

a1···an=1
ai/ai+1>

√
3/2

1

an · · · am+1

da

δ(a)
<∞.

We introduce the change of variables a = a(y) as in the proof of Theorem 2.18.
The key point is once again that

1

an · · · am+1

1

δ(a)
= y−β1

1 · · · y−βn−1
n−1 (2.15)

where each βj > 0.
To compute the βj , it is convenient to rewrite

1

an · · · am+1
= a1 · · · am,

using here that a1 · · · an = 1. We compute as before that

an =

n−1∏
j=1

y
−j/n
j ,

so that
am+1 =

∏
j6m

y
−j/n
j

∏
j>m

y
(n−j)/n
j .

Using the definition yi = ai/ai+1, we compute moreover that

a1 · · · am = y1y
2
2 · · · ymmamm+1 =

∏
j6m

y
j(1−m/n)
j

∏
j>m

y
(n−j)/n
j .

Recall, finally, that

δ(a(y)) =
∏
j

y
j(n−j)
j .

We obtain in summary that (2.15) holds with

j 6 m =⇒ βj = j(n− j)− j(1−m/n) = j(n− j − 1 +m/n),

j > m =⇒ βj = j(n− j)− (n− j)/n = (n− j)(j − 1/n).

In either case, since 1 6 j 6 n− 1, we have βj > 0, as required. �

Exercise 2.9. Show that
EL(|L ∩BR| − 1)2 =∞.

Remark 2.22. In the case n = 2, the calculations of Lemma 2.21 and Exercise 2.9
boil down to the following (cf. Exercise 2.7):∫ ∞

y=
√

3/2

y1/2 dy

y2
<∞,

∫ ∞
y=
√

3/2

y
dy

y2
=∞.

Next, for a measurable function f on Rn, define (if convergent) Eis[f ] : X
(1)
n → C

by Eis[f ](L) :=
∑

06=v∈L f(v). Taking for f the characteristic function 1Ω of a set

Ω as above, we then have Eis[1Ω](L) = |L ∩ Ω| − 1.
Suppose now that f ∈ Cc(Rn). The sums defining Eis[f ] are then finite. Lemma

2.21 (applied with R large enough that BR contains the support of f) implies that

Eis[f ] defines an integrable function on X
(1)
n . The map

Cc(Rn) 3 f 7→ EL Eis[f ](L),
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being finite on its domain and nonnegative whenever f is, defines a measure µ on
Rn.

For g ∈ SLn(R), set R(g)f(v) := f(vg). Then Eis[R(g)f ](L) = Eis(f)(Lg). Thus

the SLn(R)-invariance of the Haar measure on X
(1)
n implies the SLn(R)-invariance

of µ.
By arguments similar to those used to establish the uniqueness properties of

Haar measure, one can verify that any SLn(R)-invairant measure µ on Rn is of the
form

µ = c0δ0 + c1λ, (2.16)

where c0, c1 are scalars, δ is the δ-mass at the origin, and λ denotes Lebesgue
measure. The main point in completing the proof is to verify that c0 = 0 and
c1 = 1.

Lemma 2.23. c1 = 1.

Proof. We consider the R → ∞ asymptotics of µ(fR), where fR denotes the nor-
malized characteristic function of BR, i.e., fR = 1BR/ vol(BR). We see first from
Lemma 2.21 that lim supR→∞ µ(fR) <∞.

On the other hand, for each unimodular lattice L, it follows from Riemann
integration in Rn that Eis[fR](L) → 1 as R → ∞. (Indeed, Eis[fR](L) is one
less than the number of points of L in the ball BR, divided by the volume of
BR. Equivalently, it is one less than the number of points of the rescaled lattice
R−1L in the ball B1, divided by Rn vol(B1). Since L is unimodular, the count
R−n|R−1L ∩ B1| is a Riemann sum approximation to the volume of B1. Thus
Eis[fR](L)→ 1.)

We see moreover from the proof of lemma 2.21 that the functions Eis[fR] are
all majorized on the standard Siegel domain by the same integrable function, a
constant multiple of max16m6n a1 · · · am. By the dominated convergence theorem,
we deduce that µ(fR) = EL Eis[fR](L)→ 1 as R→∞.

On the other hand, it is clear from (2.16) that µ(fR)→ c1 as R→∞. Therefore
c1 = 1. �

Lemma 2.24. c0 = 0.

Proof. The proof is similar to that of lemma 2.23, but we instead consider the be-
havior as R→ 0 of µ(fR) with fR := 1BR the unnormalized characteristic function.
We see as before that the Eis[fR] are majorized by a common integrable function.
On the other hand, for each unimodular lattice L, we have Eis[fR](L) → 0 as
R → 0. Therefore µ(fR) = EL Eis[fR](L) converges to 0 as R →∞. On the other
hand, it also converges to c0. �

2.8. Convergence of Eisenstein series. Here I largely follow the exposition of
Borel [2, §11–12].

2.8.1. Statement of result. Let (G,Γ) be either

(GLn(R),GLn(Z)) or (SLn(R),SLn(Z)).

We write as usual G = NAK for the Iwasawa decomposition, here with A the group
of diagonal matrices having positive entries.
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Each n-tuple s = (s1, . . . , sn) ∈ Cn of complex numbers defines a character of
A, i.e., a continuous homomorphism A→ C×, given by

a 7→ as := as11 · · · asnn .

This character extends to a character of the group B = NA, given by ua 7→ as,
having trivial restriction to the subgroup ΓB := Γ ∩ B of elements with integral
entries.

Definition 2.25. We call s ∈ Cn dominant if

Re(s1) > · · · > Re(sn)

and strictly dominant if

Re(s1) > · · · > Re(sn).

We recall from §2.5 that the modulus character δB of B is given by

δ(ua) =
∏
i<j

ai/aj = an−1
1 an−3

2 · · · a1−n
n .

With the notation introduced above, we may write δ(ua) = a2ρ, where ρ ∈ Rn is
the dominant element defined by

ρ =

(
n− 1

2
,
n− 3

2
, . . . ,

1− n
2

)
.

For g ∈ G, let us write a(g) ∈ A for its Iwasawa component, so that g ∈ Na(g)K.

Theorem 2.26. For s ∈ Cn with s− 2ρ strictly dominant and g ∈ G, the series∑
γ∈ΓB\Γ

a(γg)s

converges absolutely, locally uniformly.

We note that, since the character B 3 ua 7→ as has trivial restriction to ΓB , the
function Γ 3 γ 7→ a(γg)s is left-invariant under ΓB . Thus the terms in the above
series are well-defined.

Corollary 2.27. For given g, the above series defines a holomorphic of s in the
indicated domain.

The idea of the proof, developed leisurely over the next few subsections, is to
compare the sum to an integral.

Exercise 2.10. Assuming that the theorem holds for G = SLn(R), deduce it for
G = GLn(R).

We henceforth focus on the case G = SLn(R).

2.8.2. Recap on the finite-dimensional representation theory of SLn. Here we recall
the classification of finite-dimensional representations of G = SLn(R). The full
contents of this section are not necessary for our immediate aims, but help place
some of our arguments in context.

Definition 2.28. By a weight we mean an equivalence class of elements ω of Zn, with
two such elements declared equivalent if their difference is a multiple of (1, 1, . . . , 1).
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We observe that if two elements of Zn are equivalent, then they define the same
character of A 6 SLn(R), since any element a ∈ A satisfies a1 · · · an = 1. The map
ω 7→ [a 7→ aω] identifies weights with polynomial characters of A.

Example 2.29. For 1 6 m 6 n− 1, the element

βm := (1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0) : a 7→ a1 · · · am

is a nontrivial dominant weight. These are called the fundamental weights.

Exercise 2.11. The set of weights is a free Z-module with basis given by the set
{β1, . . . , βm−1} of fundamental weights. A weight ω is dominant iff ω ∈

∑
m Z>0βm.

Definition 2.30. We say that a ∈ A is dominant if a1 > · · · > an. Given weights
ω1 and ω2, we say that ω1 is higher than ω2, and write ω1 > ω2, if aω1 > aω2 for
all dominant a ∈ A. We say that a weight ω is positive if ω > 0.

The relation ω1 > ω2 defines a partial order on the set of weights. We note that
if ω is dominant, then it is positive, but not conversely; for instance, ω = (1,−1, 0)
is positive but not dominant.

Definition 2.31. By a representation of G = SLn(R), we mean a pair (σ, V ), where
V is a finite-dimensional complex vector space and σ : G → GL(V ) is a continu-
ous homomorphism. Such a representation is irreducible if it is nonzero and if it
has, other than {0} and V , no invariant subspaces (i.e., subspaces W 6 V with
σ(G)W ⊆ W ). As a matter of notation, one often abbreviates gv := σ(g)v for
g ∈ G and v ∈ V when the homomorphism σ is understood from context.

Definition 2.32. Let (σ, V ) be a representation of G. A nonzero vector v ∈ V is
said to be a weight vector of weight ω if σ(a)v = aωv for all a ∈ A.

Example 2.33. The standard representation (σ, V ) is V = Cn, with σ the “identity”
map. The standard basis vectors e1, e2, . . . , en satisfy

aej = ajej

and are thus weight vectors, with weights β1 = (1, 0, . . . , 0), (0, 1, 0, . . . , 0), 0, . . . , 0, 1).
Note that the weight of e1 is higher than the weights of all the other basis elements.

Example 2.34. More generally, for 1 6 m 6 n − 1, the mth exterior power ΛmCn
of the standard representation admits the basis of weight vectors

ei1 ∧ · · · ∧ eim (1 6 i1 < · · · < im 6 n)

with weights given by elements of Zn consisting of m ones and n−m zeros, corre-
sponding to the characters a 7→ ai1 · · · aim . The vector e1 ∧ · · · ∧ em has weight βm,
which is higher than all the other weights.

The previous examples are special cases of a more general result, most of which
is known as the theorem of the highest weight.

Theorem 2.35. For each dominant weight ω, there is an irreducible representation
(σω, Vω), unique up to isomorphism, with the following properties.

(1) Vω contains a unique (up to scaling) weight vector eω of weight ω that is
moreover N -invariant.

(2) Vω admits a basis of weight vectors of weight 6 ω.
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This association defines a bijection

{dominant weights} ↔ {irreducible representations up to isomorphism}.
Each Vω admits an “integral structure,” i.e., a Z-submodule Eω ⊆ Vω which is
invariant by Γ = SLn(Z) and for which Vω = Eω ⊗Z C. We can choose eω to lie in
Eω.

The weight ω is referred to as the highest weight of the representation, and eω
as a highest weight vector.

Example 2.36. Suppose that ω = βm is a fundamental weight. Then, following
Example 2.34, we may take Vω = ΛmCn. An integral structure Eω is given by Z-
span of the basis elements ei1∧· · ·∧eim . The highest weight vector eω := e1∧· · ·∧em
then lies in Eω.

We equip each such Vω with a K-invariant inner product, hence a K-invariant
Euclidean norm. By the discreteness of the submodule Eω, we see that the numbers
‖v‖ for 0 6= v ∈ Eω are bounded away from zero. For instance, in the setting of
Example 2.36, we may take the inner product with respect to which the indicated
basis is orthonormal; we then have ‖v‖ > 1 for all 0 6= v ∈ Eω. We assume that
the highest weight vector eω is a unit vector. We then have the following useful
formula:

Lemma 2.37. a(g)ω = ‖g−1eω‖−1 for all g ∈ G.

Proof. Write g = uak. Then g−1eω = k−1a−1u−1eω. Recalling that

• u−1eω = eω,
• a−1eω = a−ωeω,
• ‖.‖ is K-invariant, and
• eω is a unit vector,

we obtain

‖g−1eω‖ = ‖k−1a−1eω‖ = a−ω‖k−1eω‖ = a−ω,

as required. �

2.8.3. Geometric lemmas.

Lemma 2.38. For each dominant weight ω and each γ ∈ Γ, we have a(γ)ω 6 1.

Proof. Since the dominant weights are nonnegative integral combinations of the
fundamental weights, it suffice to consider the case that ω is a fundamental weight
βm. We’ve seen then that ‖v‖ > 1 for all 0 6= v ∈ Eω. Since Eω contains eω
and is Γ-invariant, we have in particular ‖γ−1eω‖ > 1 for all γ ∈ Γ. The required
inequality follows now from Lemma 2.37. �

Example 2.39. Take n = 2 and γ =

(
a b
c d

)
∈ Γ = SL2(Z). One can check directly

that

a(γ) =

(
1/
√
c2 + d2 0

0
√
c2 + d2

)
, a(γ)β1 = 1/

√
c2 + d2.

In the setting of the above proof, this amounts to noting that

γ−1 =

(
d −b
−c a

)
, γ−1e1 =

(
d
−c

)
, ‖γ−1e1‖ =

√
c2 + d2.
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The inequality a(γ)β1 6 1 thus amounts to that c2 + d2 > 1 for integers c and d,
not both zero.

Definition 2.40. The negative cone −A ⊆ A is defined by
−A := {a ∈ A : aω 6 1 for all dominant weights ω}.

Using the relation between dominant and fundamental weights, we see that −A
may be described by the smaller set of conditions

aβm = a1 · · · am 6 1 for 1 6 m 6 n− 1.

Corollary 2.41 (of Lemma 2.38). For each γ ∈ Γ, we have a(γ) ∈ −A.

Exercise 2.12. Let S ⊆ G be a Siegel domain. Let ω be a dominant weight. Verify
that

a(gx)ω � a(g)ωa(x)ω for all g ∈ G, x ∈ S,

where the implied constant may depend upon (n,S, ω) but not (g, x).
[Hint: using the Iwasawa decomposition, reduce to the case g ∈ K, then further

to the case that g lies in a fixed compact set and x is a dominant element of A.
Then apply Lemma 2.37.]

Exercise 2.13. Interpret the result of the previous exercise as follows. Let L be a
unimodular lattice. Let 1 6 m 6 n− 1.

(i) With notation as in Theorem 2.6, let vn, . . . , v1 be a reduced basis of L (it
will be convenient to reverse the usual numbering) and aj := |v′j | the corre-
sponding Iwasawa coordinates, so that a1 � · · · � an. Verify that a1 · · · am
is the covolume of the lattice ⊕mj=1Zvj (inside its real span, equipped with the
volume form induced by the restriction of the standard Euclidean metric on
Rn).

(ii) Let w1, . . . , wn be any basis of L. Show that the covolume of the lattice
⊕mj=1Zwj is � a1 · · · am.

Thus a reduced basis vn, . . . , v1 simultaneously minimizes (up to constants) the
covolumes of each of the lattices ⊕mj=1Zvj for 1 6 m 6 n− 1.

It may be instructive at this point to draw a picture depicting the various con-
ditions in play here.

One more easy lemma:

Lemma 2.42. Let Ω be a compact subset of G. Then there is a compact subset ΩA
of A so that a(xg) ∈ a(x)ΩA for all x ∈ G and g ∈ Ω.

Proof. By enlarging Ω if necessary, we may assume that it is closed under left and
right multiplication by the compact subgroup K of G. Write x = uak (Iwasawa
decomposition). Then xg = uakg with kg ∈ Ω. By the Iwasawa decomposition,
we may find a compact subset ΩA ⊆ A so that Ω ⊆ NΩAK. Then kg admits the
Iwasawa decomposition u′a′k′ with a′ ∈ ΩA. We have xg = u(au′a−1)aa′k′. Since
A normalizes N , this shows that a(xg) = aa′ ∈ aΩA, as required. �

2.8.4. Proof of Theorem 2.18. We must show that if g belongs to a fixed com-
pact subset of G and s belongs to a fixed compact subset of the region {s :
s− 2ρ strictly dominant}, then

∑
γ∈ΓB\Γ a(γg)s � 1.

By Lemma 2.42, we have for g and s as above and all γ ∈ Γ the estimate

a(γg)s � a(γ)s
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Figure 1. A “map” of the diagonal subgroup A 6 SL3(R).

Moreover, if s lies in Rn, then each of the above quantities is positive. The theorem
will thus follow if we can show that for each s ∈ Rn with s− 2ρ strictly dominant,∑

γ∈ΓB\Γ

a(γ)s <∞.

Since the subgroup Γ of G is discrete, we may find a nonempty bounded neigh-
borhood Ω ⊆ G of the identity element such that the translates γΩ for γ ∈ Γ are
disjoint from one another. By another application of Lemma 2.42, we have

a(γ)s � a(γg)s

for all γ ∈ Γ and g ∈ Ω. We thereby reduce to verifying that∫
g∈Ω

∑
γ∈ΓB\Γ

a(γg)s dg <∞.

The sets ΓBγΩ for coset representatives γ ∈ ΓB\Γ are disjoint from one another,
so it is enough to verify that ∫

g∈ΓB\ΓΩ

a(g)s dg <∞,

where now dg denotes the quotient Haar measure on ΓB\G.
Let γ ∈ Γ and g ∈ Ω. Let ω be a dominant weight. By Lemma 2.42, we have

a(γg)ω � a(γ)ωa(g)ω. Recalling from Lemma 2.38 that a(γ)ω 6 1 and from, e.g.,
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Lemma 2.42 that a(γ)ω � 1, we obtain

a(γg)ω � 1.

This last estimate tells us that each g ∈ ΓΩ satisfies a(g) ∈ c ·−A for some fixed
c ∈ A, depending at most upon Ω. In other words,

ΓΩ ⊆ N · c · −A ·K.

We thereby reduce to verifying that∫
g∈ΓB\N ·c·−A·K

a(g)s dg <∞.

We now recall from Example 2.17 that a Haar measure dg may be given in
Iwasawa coordinates g = uak by du da

a2ρ dk. The quotient ΓN\N is compact because
it is the image of the compact set {u ∈ N : |uij | 6 1/2∀i < j}, as one verifies readily
either directly or by adopting the proof of Theorem 2.6. The group K is compact.
We thereby reduce to verifying the finiteness of∫

a∈−A

as−2ρ da (2.17)

whenever s−2ρ is strictly dominant, where as usual da denotes a Haar measure on
A, e.g., that given by

da =
da1 · · · dan−1

a1 · · · an−1
.

At this point, we might as well substitute s 7→ s+ 2ρ to reduce to verifying that∫
a∈−A

as da (2.18)

is finite whenever s is strictly dominant.
To understand the last integral (2.18), we change coordinates to

tm = a1 · · · am (1 6 m 6 n− 1).

In these coordinates, the domain −A is described by the conditions tm 6 1 for all
m. Moreover, if define ν1, . . . , νn−1 by

νm := sm − sm+1 > 0,

then we have

sm = νm + νm+1 + · · ·+ νn−1 + sn

and

as =

n−1∏
m=1

tνmm .

The integral (2.18) of interest thus factors as the product of one-dimensional inte-
grals ∫ 1

tm=0

tνmm
dtm
tm

,

each of which converge. The proof is thus complete.
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Exercise 2.14. For γ ∈ Γ = SLn(Z), write a1(γ), . . . , an(γ) > 0 for the Iwasawa
coordinates. Note that these depend only upon the coset ΓBγ. For 1 6 m 6 n− 1,
define tm(γ) := a1(γ)a2(γ) · · · am(γ).

Show that for X1, . . . , Xn−1 > 1,

# {γ ∈ ΓB\Γ : tm(γ) > 1/Xm for all 1 6 m 6 n− 1} � (X1 · · ·Xn−1)2.

Show also that for X > 1,

# {γ ∈ ΓB\Γ : ai(γ)/ai+1(γ) > 1/X for all 1 6 i 6 n− 1} � Xp

for some p = p(n) > 0.

Exercise 2.15. Let S 6 G be a Siegel domain, and Ω ⊆ G a compact subset.

(1) Show that there exists c > 1 with the following property. Let x ∈ S and
γ ∈ Γ. Suppose that γx ∈ NxΩ. Let 1 6 i < j 6 n be indices such that
the Iwasawa coordinates a1, . . . , an of x satisfy ai/aj > c. Then γji = 0.

(2) Show that for each g ∈ S,

#{γ ∈ Γ : g−1γg ∈ Ω} � a(g)2ρ.

(3) Show that there is a bounded subset of S containing all g ∈ S for which
γg ∈ NΩ for some γ ∈ Γ.

3. Basics on automorphic forms

At least initially, we’ll follow in large part the exposition of Borel [2, §2].

3.1. Motivation. Sometimes it’s useful to break problems up into analytic and al-
gebraic parts. For instance, as a first step towards the analysis of spaces of functions
on the circle group R/Z, one can study the algebraically-flavored space of trigono-
metric polynomials, i.e., finite linear combinations of the functions x 7→ e(nx)
(n ∈ Z). It’s straightforward to verify that the Fourier inversion formula and the
Parseval relation hold for such functions. One can then deduce the corresponding
assertions for more analytically-flavored spaces (e.g., the space L2(R/Z) of square-
integrable functions the space C∞(R/Z) of smooth functions, etc.) via limiting
arguments. Similarly, on the real line, one can approach analytic questions con-
cerning function spaces (L2(R), the Schwartz space S(R), etc.) by first studying al-
gebraic questions concerning finite linear combinations of Fourier modes x 7→ e(ξx)
(ξ ∈ R), or finite linear combinations of hermite functions, i.e., functions of the

form x 7→ P (x)e−πx
2

for a polynomial P .
Automorphic forms are algebraically-flavored spaces of functions on Γ\G.

3.2. Definition without explanation. We continue to focus on the examples
Γ\G = SLn(Z)\ SLn(R) or GLn(Z)\GLn(R). We accordingly let K denote SO(n)
or O(n).

Definition 3.1. An automorphic form ϕ : G→ C is a continuous function such that

(A1) ϕ(γx) = ϕ(x) for all γ ∈ Γ, x ∈ G
(A2) ϕ is right K-finite, i.e., the span of {ϕ(·k) : k ∈ K} is finite-dimensional.
(A3) ϕ is Z(g)-finite, where Z(g) denotes the center of the universal enveloping

algebra.
(A4) ϕ is of moderate growth.

The conditions in this definition are elaborated below.
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3.3. Norms on G. For x ∈ G, we define

‖x‖2 :=
∑
i,j

(
|xij |2 + |(x−1)ij |2

)
.

We observe that

‖xy‖ 6 ‖x‖.‖y‖, ‖x‖ = ‖x−1‖,

that {x ∈ G : ‖x‖ 6 c} is compact for each c > 0, and that for each compact subset
Ω of G,

‖uxu′‖ � ‖x‖ (u, u′ ∈ Ω, x ∈ G). (3.1)

Exercise 3.1. Let S ⊆ G = SLn(R) be a Siegel domain (Definition 2.9). Let ω be a
dominant weight (§2.8.2). Show that there exists m > 0 such that for each compact
subset Ω ⊆ G there exists C so that for all γ ∈ Γ, x ∈ S and g ∈ Ω,

a(x)ω 6 C‖γxg‖m.

[Hint: use that ‖h‖ � ‖hg‖ for g ∈ Ω and that if x ∈ B, then a(x)ω = ‖xeω‖.]

3.4. Functions of moderate growth. We say that a function f : G → C is of
moderate growth if there exists m ∈ Z so that

f(x)� ‖x‖m (x ∈ G). (3.2)

We say that f is of rapid decay if the estimate (3.2) holds for all m ∈ Z.
It is clear that a sum or product of functions of moderate growth or rapid decay

has the same property, while the product of one function of moderate growth with
another function of rapid decay is of rapid decay. Thus the functions of moderate
growth form a ring which contains the functions of rapid decay as an ideal.

3.5. Finite functions.

3.5.1. Generalities.

Lemma 3.2. Let G be a locally compact group. Let f : G → C be a continuous
function (measurability would also suffice). The following conditions are equivalent:

(i) The span of the right G-translates of f is finite-dimensional.
(ii) The span of the left G-translates of f is finite-dimensional.

(iii) The span of the G×G-translates of f is finite-dimensional.
(iv) f arises as a matrix coefficient for some finite-dimensional representation

(π, V ) of G: there exists α ∈ End(V )∗ so that f(g) = α(π(g)).

Definition 3.3. A finite function on G is one satisfying the equivalent conditions of
the lemma.

Example 3.4. For G = R = R/Z, the finite functions are the trigonometric polyno-
mials, i.e., the finite linear combinations of x 7→ e(nx).

Example 3.5. For a compact group G, any finite-dimensional representation de-
composes as a direct sum of irreducible representations, so the finite functions are
the finite linear combinations of matrix coefficients of irreducible finite-dimensional
representations. The Peter–Weyl theorem says that these are dense in L2(G).



NOTES ON LECTURES ON THE SPECTRAL THEORY OF EISENSTEIN SERIES 27

Example 3.6. For G = R, the finite functions are the finite linear combinations of
the exponential polynomials

x 7→ eαxxβ

defined for α ∈ C and β ∈ Z>0.
These are also the generalized eigenfunctions of the differentiation operator ∂x =

d
dx , i.e., the function f for which (∂x − α)β+1f = 0.

Example 3.7. For G = R×+
log−−→ R, the finite functions are those of the form

y 7→ yα(log y)β ,

with α and β as above. These are also called exponential polynomials.

3.5.2. Isotypic decomposition. Let K and G be as in Definition 3.1. Let ϕ : G→ C
be a right K-finite continuous function. Write V for the (finite-dimensional) span
of the right translates of ϕ. Then K acts on V via right translation. By Maschke’s
theorem, we may decompose V as a direct sum of irreducible representations of K.

Let σ be an irreducible representation of K. We say that ϕ has K-type σ if V is
isomorphic to a direct sum of copies of σ. Define eσ ∈ C∞(K) by the formula

eσ(k) := (dimσ)χσ(k),

where χσ(k) := trace(σ(k)) denotes the character of σ. Using the Schur orthogo-
nality relations, we may check that ϕ has K-type σ if and only if the convolution

ϕ ∗ eσ : g 7→
∫
k∈K

ϕ(gk−1)eσ(k) dk,

defined using the probability Haar measure dk on K, coincides with ϕ, i.e., ϕ∗eσ =
ϕ.

We say that V is K-isotypic if it has K-type σ for some σ. In general, we may
write any K-finite ϕ as a finite sum of K-isotypic vectors, indexed by σ in some
finite collection Ξ of (isomorphism classes of) irreducible representations of K. For
any such Ξ, set

eΞ :=
∑
σ∈Ξ

eσ.

Then a continuous function ϕ on G is K-finite if and only if it satisfies ϕ ∗ eΞ = ϕ
for some such Ξ.

3.6. Universal enveloping algebra.

3.6.1. General definition and construction. Let g be a Lie algebra.

Definition 3.8. A universal enveloping algebra U(g) is a unital associative algebra
equipped with a morphism of Lie algebras g → U(g) that is universal among such
morphisms in the following sense: for each morphism of Lie algebras g→ A whose
target is unital associative algebra A, there is a unique morphism of associative
algebras U(g) → A such that the composition g → U(g) → A is the given map
g→ A.

By the usual arguments, if such an algebra exists, then it is unique. For this
reason we typically speak of “the” universal enveloping algebra. We may construct
U(g) explicitly as the quotient T (g)/I, where
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• T (g) denotes the tensor algebra of g, i.e., the graded algebra ⊕k∈Z>0
g⊗k

equipped with the multiplication

(x1 ⊗ · · · ⊗ xk1) · (y1 ⊗ · · · ⊗ yk2) = x1 ⊗ · · · ⊗ xk1 ⊗ y1 ⊗ · · · ⊗ yk2 ,

and
• I denotes the ideal of T (g) generated by the elements x⊗ y− y⊗ x− [x, y]

for x, y ∈ g.

In other words, U(g) may be regarded as the non-commutative polynomial ring
generated by elements X ∈ g subject to the relations XY − Y X = [X,Y ].

The proof that this construction defines a universal enveloping algebra is the
same as the proof that, e.g., the usual construction of the tensor product of a pair
of vector spaces satisfies its universal property.

3.6.2. Construction via Lie theory. Let G be a Lie group. We’ll assume that it’s
a closed subgroup of GLn(R). Then g := Lie(g) may be identified with a Lie
subalgebra of the algebra Mn(R) of n× n matrices.

The group G acts on itself by left and right translation, hence also on functions
on G. For g ∈ G and f : G→ C, we set

rgf(x) := f(xg), `gf(x) := f(g−1x).

These define the right and left regular representations of G.

Exercise 3.2. Verify that rg1rg2 = rg1g2 and `g1`g2 = `g1g2 .

For X ∈ g, we write eX = exp(X) ∈ G for its exponential, which may be defined
by the usual series. Thus

etX =
∑
n>0

tnXn

n!
.

The group G acts on itself by conjugation. This induces the adjoint representa-
tion of G on g, denoted Ad : G→ GL(g). We have

getXg−1 = etAd(g)X .

Each X ∈ g defines a left-invariant differential operator on G, i.e., an element
[f 7→ Xf ] of End(C∞(G)) given by

Xf(g) := ∂t=0f(getX).

In other words, Xf = ∂t=0retXf is obtained by differentiating the right regular
representation of G. The Lie bracket [, ] on g is characterized by the identity

X(Y f)− Y (Xf) = [X,Y ]f (f ∈ C∞(G)). (3.3)

The map g → End(C∞(G)) is thus a Lie algebra homomorphism. This map is
readily seen to be injective (consider the first order Taylor coefficients of f at the
identity), so we may identify g with its image.

The universal enveloping algebra U(g) may be defined as the subalgebra of
End(C∞(G)) generated by g. (It is clear from the universal propetry that U(g),
as constructed in §3.6.1, admits a map to End(C∞(G)). The point is just that
this map is injective.) We may also identify U(g) with the algebra of left-invariant
differential operators on G, or with the convolution algebra of distributions on G
supported at the identity element.
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3.6.3. The center.

Definition 3.9. We denote by Z(g) the center of U(g).

Definition 3.10. In the setting of §3.2, we say that ϕ : G → C is Z(g)-finite if the
image of its span under the action of Z(g) described in §3.6.2 is finite-dimensional.

Example 3.11. For G = GLn(R), Z(g) is isomorphic to a polynomial ring in n
variables, described explicitly via the Harish–Chandra isomorphism [8, p.220].

Example 3.12. For G = SL2(R), Z(g) is isomorphic to a polynomial ring in one
variable. It is freely generated by the element

Ω = ef + fe+
1

2
h2, (3.4)

where

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

This is the simplest example of a “Casimir element.” Note that in (3.4), the prod-
ucts ef, fe, h2 take place inside U(g), not inside the space of 2× 2 matrices.

3.7. Finiteness. The algebra Z(g) acts on the space of smooth functions ϕ on G
(and also on, e.g., the space of distributions). The space Z(g)ϕ = {Dϕ : D ∈ Z(g)}
is isomorphic to the quotient algebra Z(g)/Ann(ϕ), where Ann(ϕ) = {D : Dϕ = 0}
denotes the annihilator ideal of ϕ. Thus that space is finite-dimensional if and only
if that ideal is of finite codimension. In particular, ϕ is Z(g)-finite if and only if it
is annihilated by some ideal J in Z(g) of finite codimension. We say in the latter
case that ϕ has Z(g)-type J .

3.8. Relation to classical modular forms. Take Γ\G = SL2(Z)\ SL2(R), K =
SO(2). Then G/K identifies with the upper half-plane H = {x + iy : y > 0} via
the map gK 7→ g · i, where G acts on H via fractional linear transformations:(

a b
c d

)
· z =

az + b

cz + d
.

Definition 3.13. A function f : H→ C is a modular form of weight m if

(M1) f(γz) = (cz + d)mf(z) for all γ =

(
a b
c d

)
∈ Γ and z ∈ H.

(M2) f is holomorphic.
(M3) f is “regular at the cusp.”

Explanation of (M3): from (M1) we see that f(z + 1) = f(z), then from (M2)
that f(z) =

∑
n∈Z ane(nz), where as usual e(z) := e2πiz. The factor e(nz) blows

up as y →∞ if n < 0. Condition (M3) says that an = 0 unless n > 0, so that such
blow-up does not occur.

The relation between Definition 3.13 and Definition 3.1 is as follows. Given a
modular form f of weight m, define a function ϕ : G→ C by

ϕ(g) := (ci+ d)−mf(g · i) if g =

(
a b
c d

)
.

Exercise 3.3. Show that (M1) implies (A1).
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Exercise 3.4. Show that (M1) implies (A2); more precisely, verify that

ϕ

(
g

(
cos θ sin θ
− sin θ cos θ

))
= e(mθ)ϕ(γ).

Exercise 3.5. Show that (M2) implies (A3); more precisely, with Ω as in Example
3.12, verify that Ωϕ = cϕ for some real number c depending only upon m.

Exercise 3.6. Show that (M3) implies (A4).

Exercise 3.7. Let f : H → C be a smooth function on the upper half-plane that
is an eigenfunction for the hyperbolic Laplacian ∆ = y2(∂xx + ∂yy). Define ϕ as
above, taking m = 0. Verify that (A3) holds for ϕ; more precisely, show that ϕ is
an eigenfunction for Ω, with eigenvalue deterimined by that for f with respect to
Λ.

3.9. Some basic properties. Recall that a Lie group G comes with natural
analytic charts, given by local exponential coordinates. We state here, without
proof, some basic consequences of Definition 3.1.

Let G = SLn(R) or GLn(R).

Theorem 3.14. Any automorphic form is analytic.

More generally, any function G→ C that is right K-finite and Z(g)-finite is an-
alytic. The idea of the proof is that the K-finiteness and Z(g)-finiteness conditions
imply that ϕ satisfies an elliptic PDE. See for instance [1, Theorem 2.13] or [2,
§3.1].

Theorem 3.15 (Harish–Chandra). For any automorphic form ϕ we may find f ∈
C∞c (G), supported arbitrarily close to the identity element, so that ϕ equals the
convolution ϕ ∗ f defined as usual by

ϕ ∗ f(x) :=

∫
g∈G

ϕ(xg−1)f(g) dg.

We may arrange moreover that f(k−1gk) = f(g) for all k ∈ K, g ∈ G.

This result again applies more generally to any right K-finite and Z(g)-finite
function on G. See for instance [1, Theorem 2.14], which develops a detailed proof
in the special case G = SL2(R), and [8, Corollary 8.41] or [2, §3.2] concerning the
general case.

Exercise 3.8. Assuming the statement of [7, Theorem 1.14], deduce the conclusion
of Theorem 3.15 in the setting of Exercise 3.7.

Definition 3.16. We say that a function ϕ : G → C has uniform moderate growth
if there exists m so that for each D ∈ U(g), the function Df , defined as in §3.6.2,
satisfies (3.2).

Proposition 3.17. Any automorphic form ϕ has uniform moderate growth.

Proof. Write ϕ = ϕ ∗ f with f ∈ C∞c (G). By elementary calculations with the
definitions, we verify that

Dϕ = D(ϕ ∗ f) = ϕ ∗Df.
On the other hand, using (3.1), we see that

ϕ(g)� ‖g‖m =⇒ (ϕ ∗Df)� ‖g‖m.
Therefore Dϕ(g)� ‖g‖m, as required. �
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4. Constant terms

The main purpose of this section is to generalize the basic estimate∑
n>0

ane
2πinz ∼ a0 (4.1)

describing the asymptotic behavior as y → ∞ of classical modular forms. More
precisely, we initiate the study of the asymptotics “near infinity” in Γ\G of an au-
tomorphic form. In this section Γ\G is either SLn(Z)\ SLn(R) or GLn(Z)\GLn(R).
We loosely follow the exposition of [2, §5–6].

4.1. Reduction from GLn to SLn. Recall from Example 3.7 that the finite func-
tions on R×+ are the exponential polynomials. The finite functions on R× will also be
referred to as exponential polynomials (they are given on each of the two connected
components by an exponential polynomial).

Take G := GLn(R). We may identify the center Z of G with R× via the map
z

z
. . .

z
z

 7→ z.

Using that G commutes with Z, we deduce that the Lie algebra z of Z, regarded as
a subspace of the universal enveloping algebra U(g), lies in the center Z(g). Thus
any automorphic form ϕ on Γ\G is in particular z-finite. By analyticity, it is also
Z-finite. Therefore for each g ∈ G, the function Z 3 z 7→ ϕ(zg) is an exponential
polynomial. We get a slightly stronger conclusion by taking into account also the
Z(g)-finiteness of ϕ (see [2, §5.6] and references):

Lemma 4.1. For each smooth Z(g)-finite function ϕ : G→ C, there are exponential
polynomials Qi on Z and elements Pi ∈ Z(g) such that for all z ∈ Z and g ∈ G, we
have

ϕ(zg) =
∑
i

Qi(z) · Pif(g), (4.2)

with Pif defined as in §3.6.2.

Since the multiplication map Z × SLn(R) → GLn(R) has image of finite index
and since exponential polynomials may be regarded as well-understood, we see that
the study of the behavior near infinity of automorphic forms on GLn(Z)\GLn(R)
largely reduces to that of automorphic forms on SLn(Z)\ SLn(R).

4.2. Standard parabolic subgroups. Fix a Siegel domain S for Γ\G (§2.4).

Question 4.2. How can a sequence x(`) ∈ S (` = 1, 2, 3, . . . ) tend off to ∞?

Recall that we may write x(`) = u(`)a(`)k(`), where u(`) lies in some fixed compact
subset of N , k(`) lies in K, and a(`) is a diagonal matrix with positive entries for

which each ratio a
(`)
i /a

(`)
i+1 is bounded from below by some fixed positive quantity.

Thus after passing to a subsequence, we may assume that each such ratio either
remains bounded or tends off to infinity as ` → ∞. Let I ⊆ {1, . . . , n − 1} denote
the set of indices for which the ratio in question remains bounded. Then I describes
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the “directions” in which x(`) remains bounded in S, while the complement of I
describes those in which it tends off to infinity.

It is often convenient to think of the set I in terms of a related equivalence

relation ∼ on {1, . . . , n}. We declare i ∼ j when the ratio a
(`)
i /a

(`)
j is bounded from

above and below by fixed positive quantities, independent of `. Thus for i 6 j, we
have i ∼ j precisely when {i, i+ 1, . . . , j − 1} ⊆ I. Such equivalence relations have
the property that their equivalence classes consist of intervals of integers. Let us
call such relations continguous. We obtain a natural bijection

{subsets I ⊆ {1, . . . , n−1}} ↔ {contiguous equivalence relations ∼ on {1, . . . , n}}.
We may, in turn, identify a continguous equivalence relation with the composition
of n describing the cardinalities of each equivalence class. For instance, if n = 8
and I = {1, 3, 4, 7}, then the equivalence classes of ∼ are {1, 2}, {3, 4, 5}, {6} and
{7, 8}, and the corresponding composition is n = 2 + 3 + 1 + 2.

(In the lecture, the following definition was given a bit later, when it seemed
better motivated.)

Definition 4.3. Given an equivalence relation ∼ on {1, . . . , n} (or equivalently, a
subset of {1, . . . , n−1}, or a composition of n), the corresponding standard parabolic
subgroup P of G is defined by

P := {g ∈ G : gij = 0 if i > j and i 6∼ j}.
The corresponding standard Levi subgroup M of P is defined by

M := {g ∈ G : gij = 0 if i 6∼ j}.
The unipotent radical U of P is given by

U := {g ∈ N : gij = 0 if i ∼ j}.
Such subgroups have already appeared implicitly: in our discussion of the shape

of Siegel domains (see handwritten notes from Lecture 2) and in our proof of The-
orem 2.6, part (v).

Exercise 4.1. With notation as above, we have P = MU . More precisely, P is the
semidirect product of M and U , with U normal.

Example 4.4. Take G = SL4. Given a sequence x(`), we get an equivalence relation
∼ (equivalently, a subset of {0, 1, 2, 3}, or a composition of 4), hence a standard
parabolic subgroup P = MU .

(i) If x(`) = diag(`2, `, `−1, `−2), then

P =


∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗

 , M =


∗
∗
∗
∗

 , U =


1 ∗ ∗ ∗

1 ∗ ∗
1 ∗

1

 .

The corresponding subset and composition are

∅ ⊆ {0, 1, 2, 3}, 4 = 1 + 1 + 1 + 1.

(ii) If x(`) := diag(`2, `2, `−1, `−3), then

P =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗

 , M =


∗ ∗
∗ ∗

∗
∗

 , U =


1 ∗ ∗

1 ∗ ∗
1 ∗

1

 .
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The corresponding subset and composition are

{0} ⊆ {1, 2, 3}, 4 = 2 + 1 + 1.

(iii) If x(`) := diag(`, `, `−1, `−1), then

P =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗

 , M =


∗ ∗
∗ ∗

∗ ∗
∗ ∗

 , U =


1 ∗ ∗

1 ∗ ∗
1

1

 .

The corresponding subset and composition are

{1, 3} ⊆ {0, 1, 2, 3}, 4 = 2 + 2.

(iv) If x(`) := diag(`, `, `, `−3), then

P =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗

 , M =


∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗

 , U =


1 ∗

1 ∗
1 ∗

1

 .

The corresponding subset and composition are

{1, 2} ⊆ {1, 2, 3}, 4 = 3 + 1.

(v) If x(`) = 1 for all `, then P = M = G and U = {1}. The corresponding subset
and composition are

{1, 2, 3} ⊆ {1, 2, 3}, 4 = 4.

Lemma 4.5. Let S be a Siegel domain for Γ\G. Let x(`) ∈ S be a sequence.
After passing to a subsequence, let ∼ denote the corresponding equivalence relation
describing the directions along which the A-coordinates of this sequence escape to
infinity. Let P = MU denote the corresponding standard parabolic subgroup. Let
v ∈ U . Define the sequence g(`) ∈ G by writing

vx(`) = x(`)g(`).

Then g(`) tends to the identity element 1 of G as `→∞. The conclusion remains
valid if we replace v by a sequence v(`) that traverses some fixed compact subset of
U .

Proof. Consider the Iwasawa decomposition x(`) = u(`)a(`)k(`). For notational
simplicity in what follows, we drop the superscripted `’s and write simply x = uak,
keeping in mind that all matrices considered may depend upon `. We write

vx = uv′ak = uav′′k = uakv′′′,

where

vu = v′u,

v′a = av′′,

v′′k = kv′′′.

Thus g(`) = v′′′. Our aim is to show that v′′′ tends to the identity element of G as
`→∞.

Since x lies in a fixed Siegel domain, we know that u lies in a fixed compact
subset of N . Since N normalizes U (check this), it follows that v′ lies in a fixed
compact subset of U .
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Next, we deduce by matrix multiplication that

v′′ij =
aj
ai
v′ij .

Since v′ ∈ U , we have for i > j that v′ij 6= 0 only if i 6∼ j; in that case, by the
construction of the equivalence relation ∼, we know that the ratio aj/ai tends to
zero as `→∞. Thus v′′ tends to the identity element 1 of U as `→∞.

Since k lies in the fixed compact subset K of G, we conclude as required that
v′′′ tends to the identity element of G. �

4.3. Approximation by constant terms.

4.3.1. Informal discussion. Let ϕ : Γ\G → C be an automorphic form. We have
noted that we may then write ϕ = ϕ ∗ f for some f ∈ C∞c (G). Let us encode this
relationship informally as the assertion that

ϕ(xg) ≈ ϕ(x) (4.3)

for all x ∈ Γ\G and all small g ∈ G, or in words, that ϕ enjoys some form of
uniform continuity under right translation by G. The precise meaning is that this
approximation becomes an identity when integrated against f(g) dg. We then have
the following informal lemma.

Lemma 4.6 (Informal). Let S be a Siegel domain. Let x(`) ∈ S be a sequence.
Let P = MU denote the standard parabolic subgroup of G attached to x(`), as in
Lemma 4.5, after passing to a suitable subsequence. Then for large ` and all u ∈ U ,
we have

ϕ(x(`)) ≈ ϕ(ux(`)).

Proof. Since ϕ is left-invariant under ΓU and the quotient ΓU\U is compact, we
may take u to lie in a fixed compact fundamental domain for that quotient (e.g.,
that obtained by requiring that each above-diagonal entry have magnitude bounded
by 1/2). Then, writing ux(`) = x(`)g(`), we have by Lemma 4.5 that g(`) → 1 as
`→∞. The claim then follows from (4.3). �

By averaging the above estimate over u in the compact group ΓU\U with respect
to a probability Haar measure du, we obtain:

Corollary 4.7 (Informal). With notation and assumptions as above, we have

ϕ(x(`)) ≈
∫
u∈ΓU\U

ϕ(ux(`)) du.

In the following subsections, we formulate a rigorous result in the spirit of the
above informal discussion.

4.3.2. Rigorous formulation. Let ϕ : Γ\G → C be an automorphic form, and S
a Siegel domain. Let m be such that ϕ satisfies the “uniform moderate growth”
condition (Definition 3.16) with exponent m.

Let S be a Siegel domain, and suppose now that Γ\G = SLn(Z)\SLn(R) (cf.
§4.1). Let x ∈ S, and write x = uak. Then a1 � · · · � an and a1 · · · an = 1. On
the other hand, since u and k lie in fixed compact sets, we have (by Exercise 3.1)

‖x‖ � ‖a‖ � max(a1, . . . , an, 1/a1, . . . , 1/an) � max(a1, 1/an)� a1/an,
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say. In particular, ‖x‖m � a(x)λ with λ the dominant weight defined by aλ :=
a1/an. The uniform moderate growth condition on ϕ thus implies that

Dϕ(x)� a(x)λ (4.4)

for fixed D ∈ U(g) and all x ∈ S.
Let P = MU be a standard parabolic subgroup of G.

Definition 4.8. The constant term of ϕ with respect to P is the function ϕP : G→ C
defined by

ϕP (g) :=

∫
u∈ΓU\U

ϕ(ug) du,

where du denotes the probability Haar measure on ΓU\U .

Example 4.9. If P = G, then M = G and U = {1}, so ϕP = ϕG = ϕ. In the
remaining cases P ( G, this definition is more interesting.

The group A acts on U and its Lie algebra u by conjugation. We denote below
by β one of the (dominant) weights describing an eigenvalue for the latter action.
Explicitly, β is uniquely of the form aβ = ai/aj for some i < j with i 6' j in the
equivalence relation attached to P .

Proposition 4.10. Let ϕ be an automorphic form. Then for each fixed N > 0 and
all x ∈ S,

ϕ(x)− ϕP (x)� max
β

a(x)λ−Nβ , (4.5)

where β runs over eigenvalues for A � u as above.

Example 4.11. Suppose P is maximal among proper standard parabolic subgroups.
Thus P corresponds to a composition of the form n = n1 + n2 with n1, n2 > 1 (as
in cases (iii) and (iv) of Example 4.4, but not the other cases). Then every β as in
Proposition 4.10 is an integer multiple of the element α given by aα = an1

/an1+1,
and so the conclusion may be formulated equivalently as the estimate

ϕ(x)− ϕP (x)� a(x)λ−Nα. (4.6)

Before giving the proof of Proposition 4.10, let us indicate how one might apply
this lemma in practice. Given x ∈ S, we may define (e.g., as in the above discussion
concerning a sequence x(`)) an equivalence relation ∼ on {1, . . . , n} describing which
ratios ai/aj are considered “large” and which are considered “small.” We then form
the corresponding standard parabolic subgroup P = MU . By construction, the
quantities a(x)β are all “large.” Since N can be taken arbitrarily large, it follows
that the RHS of (4.5) is “small” – that is to say, that ϕ is well-approximated by
its constant term ϕP on such elements x. Such conclusions may be understood as
rigorous versions of Corollary 4.7.

4.3.3. Proof when n = 2. Here we record the proof of Proposition 4.10 in the
simplest nontrivial case, in which n = 2 and P is the group of upper-triangular
matrices. It will be convenient to introduce, for x ∈ R and y ∈ R×+, the notation

u(x) :=

(
1 x
0 1

)
, a(y) :=

(
y1/2 0

0 y−1/2

)
.

There is only one relevant value of β, for which a(y)β = y. Our Siegel domain
consists of elements g = u(x)a(y)k with |x| 6 1/2 and y > t > 0, say. Our
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hypothesis is that ϕ and its derivatives are majorized on such elements by yλ for
some λ > 0. Our task is thus to show, for y � 1, that

ϕ(g)− ϕP (g)� yλ−Nβ . (4.7)

for each fixed N . Note that this translates, via the recipe of §3.8, to weaker forms
of estimates like (4.1).

Define the function φ : R/Z→ C by

φ(t) := ϕ(n(t)g).

Then ϕP (g) =
∫
φ :=

∫ 1

0
φ(t) dt, so the quantity to be estimated in (4.7) is

φ(0)−
∫
φ =

∫ 1

0

(φ(0)− φ(t)) dt = −
∫ 1

0

∫ t

0

φ′(s) ds dt = −
∫ 1

0

(1− s)φ′(s) ds.

(4.8)
It will thus suffice to show that

φ′(t)� yλ−Nβ

for all t.
Our hypotheses (4.4) on φ concerns its derivatives with respect to left-invariant

differential operators, induced by the action of G on Γ\G via right translation. To
apply these here, we need to express the “ordinary” derivative φ′(t) in terms of such
differential operators. This is achieved as follows. First, the Lie algebra element

X :=

(
0 1
0 0

)
of g = Lie(G) is an infinitesimal generator of the subgroup N . We indeed have

φ′(t) =
d

dt
ϕ(etXg).

The RHS of this last identity may be understood as the evaluation of the derivative
of ϕ at the tangent vector to G at g given by

Xu(x)a(y)k.

We can rewrite this tangent vector as

y−1u(x)a(y)Xk,

using here the matrix conjugation identities u(x)X = Xu(x) and a(y)−1Xa(y) =
y−1X, and then further as

y−1g(k−1Xk).

In other words, we have shown that

φ′(t) = y−1 d

dt
ϕ(getX

k

), Xk := k−1Xk.

Now since k lies in the fixed compact subgroup SO(2), we know that Xk lies in
some fixed compact subset of g. Therefore the uniform moderate growth condition
(4.4) implies that

φ′(t)� yλ−1.

This gives the required estimate in the special case N = 1. In general, we iterate
the argument. We verify first, exactly as above, that

φ(N)(t)� yλ−N .
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We then use the integral formulas, for j = 1, . . . , N − 1,

φ(j)(t) = −
∫ 1

0

(1− s)φ(j+1)(s+ t) ds,

proved in the same way as (4.8), to show by descending induction on j = N,N −
1, . . . , 2, 1 that

φ(j)(t)� yλ−N .

The same estimate then holds for φ(t) thanks again to (4.8). The proof is now
complete.

Remark 4.12. Another useful way to analyze differences as in (4.8) is via Fourier
inversion, which gives for a smooth function φ : R/Z→ C the identity

φ(0) =
∑
n∈Z

an, an :=

∫
R/Z

φ(x)e(nx) dx. (4.9)

We have a0 =
∫
φ. On the other hand, integration by parts gives for any j ∈ Z>0

that

an = (−2πin)−j
∫
R/Z

φ(j)e(nx) dx, (4.10)

so that in particular

|an| 6 |2πn|−j‖φ(j)‖∞. (4.11)

Thus for j large enough that
∑
n 6=0 |n|−j <∞ (i.e., j > 2), we have

φ(0)−
∫
φ� ‖φ(j)‖∞. (4.12)

This last estimate may be applied in the above argument and in many other situ-
ations.

4.3.4. The general argument. In general, we find a filtration of U by subgroups

U = U1 > U2 > · · · > Uq > Uq+1 = {1},

with dimensions decreasing by one, in such a way that

• each Lie-algebraic quotient Lie(Uj)/Lie(Uj+1) corresponds to some eigen-
value βj for A � u as above, and

• each group-theoretic quotient Uj/Uj+1 is central in U/Uj+1.

Example 4.13. In the case

G = SL3(R), P =

∗ ∗ ∗∗ ∗
∗

 , U =

1 ∗ ∗
1 ∗

1

 ,

we may take q = 3 and

U2 =

1 0 ∗
1 ∗

1

 , U3 =

1 0 ∗
1 0

1

 .

Exercise 4.2. Verify in general that such a filtration exists.
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We then define
ϕq+1 := ϕ

and, by descending induction on j = q, q − 1, . . . , 1,

ϕj(g) :=

∫
u∈ΓUj \Uj

ϕj+1(ug) du.

Exercise 4.3. Verify that ϕP = ϕ1.

Since ϕ = ϕq+1, we have

ϕ− ϕP =

q∑
j=1

(ϕj+1 − ϕj),

and our task reduces to verifying for each fixed N > 0 and all x ∈ S that

ϕj+1(x)− ϕj(x)� a(x)λ−Nβj . (4.13)

The groups Uj/Uj+1 are isomorphic to R, while the further quotients Γj\Uj/Uj+1

are isomorphic to R/Z. Indeed, if we let Xj ∈ u denote the elementary matrix with
eigenvalue βj under the adjoint action of A, then the map

R/Z 3 t 7→ uj(t) := etXjUj

induces an isomorphism onto Γj\Uj/Uj+1.

Example 4.14. In the setting of Example 4.13,

u3(t) =

1 0 t
1 0

1

 , u2(t) =

1 0 0
1 t

1

 , u1(t) =

1 t 0
1 0

1

 .

Now, given j ∈ {1, . . . , q} and x ∈ S, define φ : R/Z→ C by

φ(t) := ϕj+1(uj(t)x).

Clearly φ(0) = ϕj+1(x).

Exercise 4.4. Verify that
∫
φ = ϕj(x).

Our task (4.13) thereby reduces to showing that

φ(0)−
∫
φ� a(x)λ−Nβj . (4.14)

This last estimate may be proved by the same argument as in §4.3.3 (see [2, §6.7]
or [9, §I.2.10] for detailed expositions).

4.4. Properties of the constant term. Above, we defined for each reasonable
function ϕ : Γ\G → C and each standard parabolic subgroup P = MU of G the
constant term ϕP . Here we summarize some of its basic properties.

Observe that U is a normal subgroup of P , so ΓPU is a group, and we may form
the quotient ΓPU\G. This quotient fits into the fiber bundle

ΓM\M −−−−→ ΓPU\Gy
P\G.

The quotient space P\G is compact, by the Iwasawa decomposition G = PK.
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Suppose for instance that G = GLn(R). Then M ∼=
∏k
j=1 GLnk(R) (see the

examples of §4.2), ΓM\M ∼=
∏k
j=1 GLnj (Z)\GLnj (R). If P is a proper parabolic

(i.e., P 6= G), then each nj < n. One has a similar but slightly more complicated
description when G = SLn(R). In either case, we can understand ΓPU\G as the
total space of a fiber bundle with compact base and fibers given by products of
quotients much like Γ\G, but with n replaced by something smaller. This feature
often permits us to establish properties of Γ\G (or spaces of functions on it, etc.)
by induction on n; we will see a first example later today.

Lemma 4.15. ϕP is left-invariant under ΓPU .

Proof. Left-invariance under U follows from the right-invariance of the Haar mea-
sure du on ΓU\U : for x ∈ G and g ∈ U ,

ϕP (gx) =

∫
u∈ΓU\U

ϕ(ugx) du =

∫
u∈ΓU\U

ϕ(ux) du = ϕP (x).

To see the left invariance under γ ∈ ΓP , use the left invariance of ϕ under Γ to
write

ϕP (γx) =

∫
u∈ΓU\U

ϕ(uγx) du =

∫
u∈ΓU\U

ϕ(γ−1uγx) du = |c|
∫
u∈ΓU\U

ϕ(ux) du,

where c ∈ R× denotes the determinant of the adjoint action of γ on the Lie algebra
u of U . We may compute this determinant explicitly: writing M = GLn1

(R) ×
· · · × GLnk(R) with n1 + · · · + nk = n and writing γj ∈ GLnj (R) for the image of

the projection of γ to M , we see that c =
∏k
j=1 det(γj)

bi for some integers bi. On

the other hand, since γ lies in ΓP , we have γj ∈ GLnj (Z), so det(γj) ∈ {±1}. Thus
|c| = 1, as required. �

Definition 4.16. We say that a function f : ΓPU\G → C is an automorphic form
if it satisfies the following conditions, analogous to those in Definition 3.1.

(A2) f is right K-finite.
(A3) f is Z(m)-finite, where Z(m) denotes the center of the universal enveloping

algebra of m = Lie(M).
(A4) f is of moderate growth.

Lemma 4.17. Let ϕ be an automorphic form on Γ\G. Then ϕP is an automorphic
form on ΓPU\G.

Proof. Right K-finiteness follows immediately from that of ϕ (note that ϕP is
defined as an average of left translates of ϕ and that left translation commutes
with right translation). The moderate growth property follows from that of f
thanks to the observation (3.1) and the compactness of ΓU\U . It remains to verify
the Z(m)-finiteness property.

We observe first what this amounts to in the case that G = SL2(R) and ϕ = ϕf
for some classical holomorphic modular form f : H→ C of weight m (see §3.8) and

P =

(
∗ ∗
0 ∗

)
. Then ϕP is described in Iwasawa coordinates by the classical constant

term a0(z) :=
∫
u∈R/Z f(z + u) du. Of course a0(x + iy) = a0(iy), so a0 is really a

function of one variable. On the other hand, it is well-known that the holomorphy of
f implies that a0(iy) is independent of y; it is the constant term in the q-expansion
f(z) =

∑
n>0 ane(nz). To obtain a direct proof of this independence, one writes
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down the Cauchy–Riemann equations describing the holomorphy of f in Cartesian
coordinates, and separates variables; one deduces in this way that the real and
imaginary parts of a0(iy) have vanishing derivative with respect to y, hence that
a0 is indeed constant.

The general proof is similar, but requires a more explicit description of Z(g) than
we have given thus far (see Example 3.11 and references). �

4.5. Eisenstein series defined via series.

Definition 4.18. Let P = MU be a parabolic subgroup of G. Let f : ΓPU\G→ C
and let g ∈ G. We define

Eis(f)(g) :=
∑

γ∈ΓP \Γ

f(γg), (4.15)

provided that the series converges absolutely; in that case, we obtain a function

Eis(f) : Γ\G→ C.

Example 4.19. Verify that if f is supported in a compact subset of ΓPU\G, then

(i) each sum (4.15) has only finitely many nonzero terms, and
(ii) Eis(f) is supported in a compact subset of Γ\G.

[A simpler version of the arguments of §2.8 should suffice.]

Lemma 4.20. For f ∈ Cc(ΓPU\G) and ϕ : Γ\G→ C locally integrable, we have∫
Γ\G

Eis(f)ϕ =

∫
ΓPU\G

fϕP , (4.16)

where the measures are defined as follows:

• The quotient Γ\G is equipped with the Haar measure coming from a given
Haar measure dg on G and the counting measure on Γ.

• The quotient ΓP \G is equipped with the Haar measure defined in the same
way, so that Fubini’s theorem holds with respect to the fiber bundle

ΓP \Γ −−−−→ ΓP \Gy
Γ\G

(4.17)

with the counting measure on the fiber, i.e., for Φ ∈ Cc(ΓP \G),∫
ΓP \G

Φ =

∫
g∈Γ\G

(
∑

γ∈ΓP \Γ

Φ(γg)) dg.

• The Haar measure on ΓPU\G is characterized by requiring that Fubini’s
theorem holds for the fiber bundle

ΓU\U −−−−→ ΓP \Gy
ΓPU\G,

(4.18)

where, as in Definition 4.8, the compact quotient ΓU\U is equipped with the
probability Haar measure.
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Proof. We first use the left invariance of ϕ under Γ to write the LHS of (4.16) as∫
g∈Γ\G

∑
ϕ∈ΓP \Γ

ϕ(γg)f(γg) dg.

We then apply Fubin’s theorem twice, first for the fiber bundle (4.17) and then for
(4.18), giving that the above is∫

ΓP \G
ϕ(g)f(g) dg =

∫
g∈ΓPU\G

(∫
u∈ΓU\U

ϕ(ug) du

)
f(g) dg,

which in turn evaluates to the RHS of (4.16). �

Lemma 4.20 may be understood as asserting the adjointness of the two maps

[ϕ 7→ ϕP ] : {functions on Γ\G} → {functions on ΓPU\G}

and

[f 7→ Eis(f)] : {functions on ΓPU\G} → {functions on Γ\G},

when they are defined. This observation gives a sense in which the definition
(4.15) of the Eisenstein series is inevitable: it describes the adjoint of the constant
term map, which arose naturally in our study (e.g., §4.3.1) of the asymptotics of
automorphic forms near the boundary of the quotient Γ\P .

4.6. Cuspidal functions.

Definition 4.21. We say that a measurable, locally integrable function ϕ : Γ\G→ C
is cuspidal if for all standard parabolic subgroups P ( G, we have ϕP = 0 almost
everywhere. We write L2

0(Γ\G) for the space of cuspidal elements of L2(Γ\G). A
cusp form is a cuspidal automorphic form.

For now, let us abbreviate these last two spaces simply by L2
0 and L2, respectively.

Lemma 4.22. L2
0 is a closed subspace of L2.

Proof. This is similar to the following simple consequence of Fubini’s theorem: the
subspace V of L2(R2), consisting of all ϕ for which

∫
ϕ(x, y) dx = 0 for almost all

y, is closed. This fact is contained in Fubini’s theorem (or its proof). One way to
understand this observation is as follows: V is the orthogonal complement in L2(R2)
of the space of all functions of the form Φf (x, y) := f(y) for some f ∈ Cc(R).

A similar argument applies in the setting of the lemma. Using Lemma 4.20, we
see that L2

0 is the orthogonal complement of the set of Eisenstein series Eis(f) at-
tached to f ∈ Cc(ΓPU\G) for some standard parabolic P ( G. Being an orthogonal
complement, it is thus closed. �

Lemma 4.23. Any cusp form is of rapid decay (Definition 3.4).

Proof. We use that the constant terms ϕP of a cusp form ϕ vanish for each P ( G,
and appeal to the approximation of automorphic forms by their constant terms.
See [1, Cor 7.9] or [2, Thm 6.9] or [9, I.2.12, I.2.18] for details. �



42 PAUL D. NELSON

5. Finiteness theorems

Here we record a generalization of the fact that the spaces Mk(SL2(Z)) of holo-
morphic modular forms of given weight k are finite-dimensional.

Let Γ\G be either SLn(Z)\ SLn(R) or GLn(Z)\GLn(R). (Like almost all results
presented in this course, these results are valid for much more general quotients;
see the references below.) Given a finite collection Ξ of (isomorphism classes of)
irreducible representations of K and a finite codimension ideal J of Z(g), we denote
by

A(Γ\G,Ξ, J)

the space of automorphic forms on Γ\G having K-type Ξ and Z(g)-type J (§3.5.2,
§3.6). The space of automorphic forms is itself the union of these subspaces.

Theorem 5.1 (Harish–Chandra). Each of the above subspaces is finite-dimensional.

Proof. We refer for now to [1, §8] for the special case n = 2 and to [2, Thm 7.4] for
the general case. �

6. Convolution operators and decomposition of the space of cusp forms

We closely follow [1, §9] and [2, §8]. We refer to those references for summaries,
with references, of relevant terminology from functional analysis, as well as proofs.

Theorem 6.1. Let Γ\G = SLn(Z)\ SLn(R), f ∈ C∞c (G). Then the operator Tf
on L2

0(Γ\G) is trace class (and in particular, compact).

The key ingredient in the proof is the following estimate, proved by arguments
similar to those in §4.3.

Theorem 6.2. For ϕ ∈ L2
0(Γ\G) and f ∈ C∞c (G), we have ‖ϕ∗f‖∞ 6 C(f)‖ϕ‖2,

where C(f) depends at most upon f .

For the precise statement and proof of the following result, we refer for now to
[1, Thm 16.2], [2, §9], or [6, §1.6].

Theorem 6.3. The Hilbert space L2
0(Γ\G), as a unitary representation of G, de-

composes as a Hilbert direct sum of irreducible subrepresentations, each occurring
with finite multiplicity.

The main point of the proof was to show that there exist irreducible subrepre-
sentations. By contrast, the regular representation of R on L2(R) has no irreducible
subrepresentations. The result may be understood as an analogue for Γ\G of the
density of the space of trigonometric polynomials inside L2(R/Z).

References

[1] Armand Borel. Automorphic forms on SL2(R), volume 130 of Cambridge Tracts in Mathe-
matics. Cambridge University Press, Cambridge, 1997.

[2] Armand Borel. Automorphic forms on reductive groups. In Automorphic forms and applica-

tions, volume 12 of IAS/Park City Math. Ser., pages 7–39. Amer. Math. Soc., Providence,
RI, 2007.

[3] Armand Borel. Introduction to arithmetic groups, volume 73 of University Lecture Series.
American Mathematical Society, Providence, RI, 2019. Translated from the 1969 French
original [ MR0244260] by Lam Laurent Pham, Edited and with a preface by Dave Witte
Morris.

[4] Armand Borel and Harish-Chandra. Arithmetic subgroups of algebraic groups. Bull. Amer.
Math. Soc., 67:579–583, 1961.



NOTES ON LECTURES ON THE SPECTRAL THEORY OF EISENSTEIN SERIES 43

[5] Armand Borel and Harish-Chandra. Arithmetic subgroups of algebraic groups. Ann. of Math.

(2), 75:485–535, 1962.

[6] I. M. Gel′ fand, M. I. Graev, and I. I. Pyatetskii-Shapiro. Generalized functions. Vol. 6. AMS
Chelsea Publishing, Providence, RI, 2016. Representation theory and automorphic functions,

Translated from the 1966 Russian original [ MR0220673] by K. A. Hirsch, Reprint of the 1969

English translation [ MR0233772].
[7] Henryk Iwaniec. Spectral methods of automorphic forms, volume 53 of Graduate Studies in

Mathematics. American Mathematical Society, Providence, RI, second edition, 2002.

[8] Anthony W. Knapp. Representation theory of semisimple groups, volume 36 of Princeton
Mathematical Series. Princeton University Press, Princeton, NJ, 1986. An overview based on

examples.

[9] C. Mœ glin and J.-L. Waldspurger. Spectral decomposition and Eisenstein series, volume 113
of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1995. Une
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