We recall the spectral decomposition theorem for the Laplacian:

Theorem 1. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain of class C^2 . Then there exists a $L^2(\Omega)$ orthonormal Hilbert basis $(\varphi_k)_{k\in\mathbb{N}}$ of $L^2(\Omega)$ and a sequence $(\lambda_k)_{k\in\mathbb{N}}$ of positive reals
satisfying $\lambda_k \to \infty$ as $k \to \infty$ such that for every $k \in \mathbb{N}$

$$\begin{cases} -\Delta \varphi_k = \lambda_k \varphi_k & \text{ in } \Omega, \\ \varphi_k = 0 & \text{ on } \partial \Omega. \end{cases}$$

The number λ_k is called k-th *Dirichlet eigenvalue* of the Laplace operator $-\Delta$ and φ_k is called the corresponding eigenfunction. The following Lemma gives a characterisation of λ_k provided the first k-1 eigenfunctions $\varphi_1, \ldots, \varphi_{k-1}$ are all known.

Lemma 1. Let $(\varphi_k)_{k \in \mathbb{N}}$ be the $L^2(\Omega)$ -orthonormal basis of eigenfunctions of $-\Delta$ with corresponding Dirichlet eigenvalues $0 < \lambda_1 \leq \lambda_2 \leq \ldots$ from above. Then,

$$\lambda_k = \inf_{u \in Y_{k-1}} \frac{\|\nabla u\|_{L^2(\Omega)}^2}{\|u\|_{L^2(\Omega)}} = \sup_{u \in \operatorname{span}\{\varphi_1, \dots, \varphi_k\}} \frac{\|\nabla u\|_{L^2(\Omega)}^2}{\|u\|_{L^2(\Omega)}},$$

where $Y_{k-1} = \{ u \in H_0^1(\Omega) : \int_{\Omega} u\varphi_j \, dx = 0 \, \forall j = 1, \dots, k-1 \}.$

Proof. Let $\langle \cdot, \cdot \rangle$ denote the standard scalar product in $L^2(\Omega)$. Recall that for any $u \in L^2(\Omega)$ the Fourier series $(u_m)_{m \in \mathbb{N}}$ given by

$$u_m = \sum_{j=1}^m \langle u, \varphi_j \rangle \varphi_j$$

converges to u in $L^2(\Omega)$ as $m \to \infty$ and $||u||^2_{L^2(\Omega)}$ is given by the Parseval identity

$$||u||_{L^2(\Omega)}^2 = \sum_{j \in \mathbb{N}} |\langle u, \varphi_j \rangle|^2.$$

If additionally $u \in H_0^1(\Omega)$, then orthogonality $(u - u_m) \perp u_m$ holds not only in $L^2(\Omega)$ but also in $H^1(\Omega)$. Indeed, since $\langle \nabla \varphi_j, \nabla \varphi_i \rangle = \langle -\Delta \varphi_j, \varphi_i \rangle = \lambda_j \langle \varphi_j, \varphi_i \rangle = 0$ for $j \neq i$,

$$\begin{split} \langle \nabla u - \nabla u_m, \nabla u_m \rangle &= \sum_{j=1}^m \langle u, \varphi_j \rangle \langle \nabla u, \nabla \varphi_j \rangle - \sum_{j=1}^m \langle u, \varphi_j \rangle^2 \langle \nabla \varphi_j, \nabla \varphi_j \rangle \\ &= \sum_{j=1}^m \langle u, \varphi_j \rangle \langle u, \varphi_j \rangle \lambda_j - \sum_{j=1}^m \langle u, \varphi_j \rangle^2 \lambda_j = 0. \end{split}$$

last update: 3 May 2021

1/3

By Pythagoras' theorem, $\|\nabla u\|_{L^2(\Omega)}^2 = \|\nabla u - \nabla u_m\|_{L^2(\Omega)}^2 + \|\nabla u_m\|_{L^2(\Omega)}^2$. In particular, $\|\nabla u_m\|_{L^2(\Omega)}^2 \leq \|\nabla u\|_{L^2(\Omega)}^2$ for every $m \in \mathbb{N}$. Therefore, the sequence $(u_m)_{m \in \mathbb{N}}$ is bounded in $H^1(\Omega)$. Hence a subsequence $(u_m)_{m \in \Lambda \subset \mathbb{N}}$ converges weakly in $H^1(\Omega)$ and its weak limit must be u since $(u_m)_{m \in \mathbb{N}}$ also converges in $L^2(\Omega)$ to u. Consequently,

$$\|\nabla u\|_{L^2(\Omega)}^2 = \lim_{m \to \infty} \langle \nabla u_m, \nabla u \rangle = \lim_{m \to \infty} \sum_{j=1}^m \langle u, \varphi_j \rangle \langle \nabla \varphi_j, \nabla u \rangle = \sum_{j \in \mathbb{N}} \lambda_j |\langle u, \varphi_j \rangle|^2.$$

If additionally $u \in Y_{k-1}$, then

$$\|\nabla u\|_{L^2(\Omega)}^2 = \sum_{j \ge k} \lambda_j |\langle u, \varphi_j \rangle|^2 \ge \lambda_k \sum_{j \ge k} |\langle u, \varphi_j \rangle|^2 = \lambda_k \|u\|_{L^2(\Omega)}^2,$$

where equality occurs if and only if u is a multiple of φ_k . This proves the first identity. For the second identity, we notice that any $u \in \text{span}\{\varphi_1, \ldots, \varphi_k\}$ satisfies

$$\|\nabla u\|_{L^2(\Omega)}^2 = \sum_{j \le k} \lambda_j |\langle u, \varphi_j \rangle|^2 \le \lambda_k \sum_{j \le k} |\langle u, \varphi_j \rangle|^2 = \lambda_k \|u\|_{L^2(\Omega)}^2,$$

where equality occurs if (and only if) u is a multiple of φ_k . This proves the claim. \Box

The following Theorem provides a characterisation of λ_k which does not require knowledge of eigenfunctions. Instead it involves a second layer of minimisation.

Theorem 2 (Courant–Fischer min-max principle). The k-th Dirichlet eigenvalue of the Laplace operator $-\Delta$ is given by

$$\lambda_k = \inf_{\substack{V \subset H_0^1(\Omega), \\ \dim V = k}} \sup_{u \in V \setminus \{0\}} \frac{\|\nabla u\|_{L^2(\Omega)}^2}{\|u\|_{L^2(\Omega)}^2}.$$

Proof. Since span{ $\varphi_1, \ldots, \varphi_k$ } is a k-dimensional subspace of $H_0^1(\Omega)$, the second identity in Lemma 1 implies

$$\lambda_k \ge \inf_{\substack{V \subset H_0^1(\Omega), \\ \dim V = k}} \sup_{u \in V \setminus \{0\}} \frac{\|\nabla u\|_{L^2(\Omega)}^2}{\|u\|_{L^2(\Omega)}^2}.$$

Conversely, if $V \subset H_0^1(\Omega)$ is any k-dimensional subspace, then there exists an element $0 \neq w \in (V \cap Y_{k-1})$ because Y_{k-1} is of codimension k-1. Therefore, by the first identity of Lemma 1,

$$\lambda_k \le \frac{\|\nabla w\|_{L^2(\Omega)}^2}{\|w\|_{L^2(\Omega)}^2} \le \sup_{u \in V} \frac{\|\nabla u\|_{L^2(\Omega)}^2}{\|u\|_{L^2(\Omega)}^2}.$$

last update: 3 May 2021

2/3

Since the $k\text{-dimensional subspace }V\subset H^1_0(\Omega)$ is arbitrary, we obtain

$$\lambda_k \le \inf_{\substack{V \subset H_0^1(\Omega), \\ \dim V = k}} \sup_{u \in V \setminus \{0\}} \frac{\|\nabla u\|_{L^2(\Omega)}^2}{\|u\|_{L^2(\Omega)}^2}$$

which completes the proof.