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2 Strong Maximum Principle

Let €2 CC R”™ be an open domain and let the differential operator L be given by
“ 0%u - Ju
Lu = ”21 aij@)m + jzl bj(x)@ + c(z)u
satisfying the assumptions
(1) bounded coefficients: a;;,b;, c € C°(Q),

(2) uniform ellipticity: there exists ;1 > 0 such that

n

1,j=1

The goal is to complement the weak maximum principle Theorem with a local rigidity
statement.

Theorem 1 (Strong Maximum Principle, Eberhard Hopf). Let Q@ CC R" be connected.
Let u € C*(Q) satisfy Lu > 0 in Q. If ¢ < 0 and if assumptions (1) and (2) hold,
then

(on € Q: supu = u(zg) > O) = u = u(xy).
Q

If c =0, then

(Ela:o €Q: supu = u(a:o)) = u = u(zy).
Q

Dropping the assumption on the sign of c,

(EI:EOGQ: supu:u(xg):O> = u=0.
0

The key step in the proof is the following lemma.

Lemma 1 (boundary point lemma, Eberhard Hopf). Let B := B,(y) C R" and let
u € C%(B) N C°(B) satisfy Lu > 0 in B with ¢ < 0. Assume for some zoy € OB that
u(zo) > 0 and u(z) < u(xg) for every x € B. Then,

lim sup u(wg + hn) — u(zo)
h—0 h

<0,

where 1 denotes the inward-pointing unit normal of B at xy.

If ¢ =0, then the hypothesis u(zg) > 0 can be dropped. If u(zo) = 0, we can drop the
assumption on the sign of the function c.
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Figure 1: boundary point lemma: top view (left) and lateral view (right)

Comment. The assumption u(xy) > u(zx) for all z € B implies (by basic calculus) that

hn) —
D;ru := lim sup u(@o + hiy) — ulzo)

< 0.
h—0 h -

The point of Lemma 1 is to upgrade the weak inequality Dfu < 0 to the strict
inequality D,J{ u < 0. For that, we must use the equation, i.e. the assumption Lu > 0.

Proof of Theorem 1 given Lemma 1. Let M := supg u, assume this value is attained
at some x3; € € and let

S={reQ: ulx)=M}.

Since u € C°(Q) its level set S is (relatively) closed in Q. We claim that S is also
(relatively) open in Q. By contradiction, we assume the claim to be false. Hence,
there exists zg € S and a sequence (y;)ien in 2\ S such that y; — x¢ as i — co. In
particular, as shown in figure 2,

dgeQ\S: dist(y,z) < dist(y, 09Q).

Moreover, by Weierstrass theorem, there exists T € S minimizing S > z — dist(y, x).
Consequently, u satisfies the hypothesis of Lemma 1 in the ball B,.(7), where r =
|T —y| = dist(y, S). Hence, Du(z) # 0. But by the first derivative test, Du(z) = 0
which is a contradiction.

Thus S C 2 is relatively open and closed, and certainly not empty since it contains
xpr. Therefore, €2 being connected, we must conclude that S =  and thus u is
constant. O
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Figure 2: The setting in the proof of Theorem 1.

Proof of Lemma 1. Suppose we have already shown the general statement of the
Lemma, i.e. Dju < 0 under the assumptions ¢ < 0 and u(x) > 0. Let us discuss
the two special clauses.

If c=0and Lu > 0, then L(u + k) > 0 for any x € R. Pick x > 1 such that
u+ £ > 0. In particular, u(xo) + £ > 0 and the general statement yields

lim sup (u+ k)(xo+ hn) — (u+ K)(zo) lim u(xo + hn) — u(zo)
h—0 h h—0 h

< 0.

If u(zg) = 0 and u(zg) > u(z) for every x € B, then u(x) < 0 for every x € B. Thus,

0<lu= Pu_ O
T Z:: 8:[1835] +]Z_:1 J(x)@ + (cpu) — (c_u)
3 Ou S ou
Z:: &xl&pa +]z_:1bj($)a$j —(c_u) = Lu

where —c_ has the right sign, i.e. the operator L, satisfies the general assumptions
of the Lemma, Liu < 0 and we obtain D;,ru < 0.

We proceed with the proof of the general statement of the lemma. Given o > 0 to be
determined and 7(x) := |z — y|, we consider the function w: B,(y) — R given by

w(z) =e " — e,
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We compute

Figure 3: The graph of the function w(r) = e~ — e~ for a = 3 and p = 1.

Lw = e (4@2 Y ay(at =y — ) — Za(z a; + Y bz — y’))) + cw
Thanks to the ellipticity assumption (with constant p) and since ¢ < 0, we obtain

Lw > e~or” <4a2ur2 — 2« (Z Qi + Z bﬂ“) + c)

which is a quadratic polynomial in «. Therefore, Lw > 0 in B for a > «,. For
0 <e<x1weset

vi=u—u(rg) +ew

and A := B,(y) \ Be(y).

[S1hS)

Figure 4: The set A = B,(y) \ Bz (y)

M)

For € > 0 small we have v < 0 on JA. Moreover,

Lv = Lu — cu(xg) + eLw > 0.
~— ~——
>0 35 >0
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Hence, the weak maximum principle implies v < 0 in A. By calculus,

v(zg) =0,
= Dy <0.
v <0in A} nt =
Consider
.. Pt +
Dnv = Dnu+5an.
Since D:{v < 0 and eD,;Lw > () we must have D;“u < 0. O

Remark. In the setting of this lemma, if one assumes v € C*(B) then, in particular,
there exists the directional derivative

du
on

and its value equals (be definition) D;fu.

The idea behind the proof of Lemma 1 is the elliptic barrier principle. Consider
Q) CC R" and u, g € C*(Q2) N C°(Q) satisfying

Lu>0 inQ
Lg<0 inQ
g>u on Jf)

If ¢ <0, then the weak maximum principle applied to u — ¢ yields g > w in €.

4 (:
Figure 5: elliptic barrier principle

Back to Hopf: Let us revisit the argument above, and rephrase it with the language
of barriers.
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The goal is v < 0 on A which is equivalent to ew < u(xy) — u(x) on A.

Barrier principle: Choosing 0 < £ < 1 we can achieve

ew < u(rg) —u on JA

i.e. we can push the graph of ew below u(zy) — u such that it serves as a barrier.

u(:vo) —u

ew

A

S

Figure 6: If £ > 0 is sufficiently small, then ew < u(xy) — u on JA.

2.1 Method of sub- and supersolutions

Let 2 cC R"™. Consider the non-linear problem

Lu = G(x,u) in €,
u =1 on 0f).

(%)
We assume ¢ € C?(Q) and that L is elliptic with coefficients a;;, b;,c € C%*(Q)
Finally, we further require G: 0 x R — R to be C*. If you can find

« A subsolution ¢, i.e. ¢~ € C%%(Q) satisfying
Ly~ > G(z,97)  in,
o~ < on 042,

« and a supersolution ¢, i.e. o7 € C?%(Q) satisfying

Lo+ < G(z,9")  inQ,
ot > on 09.
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Figure 7: Approximating a solution by a sequence of subsolutions.

Then there exists a classical solution u € C**(2) to problem ().

The proof of this fact is actually a relatively simple application of the barrier principle:
starting with uy = ¢~ one constructs, by solving linear problems, a monotone sequence
of functions that are uniformly bounded by ¢, and thus must convergence to a fixed
point of the iteration, which will be a solution of (x). We leave the details as an
(optional, but highly instructive) exercise.

2.2 Application: The Kazdan—Warner problem

Let (X, g) be a surface of genus v with Gauss curvature K, given by

+1, ify=0,
K, = 0, ify=1,
-1, ify>2,

and consider the conformal metric § = e**¢ on ¥ which has Gauss curvature

Figure 8: A surface (X, g) of genus 7 = 2

K; = e (K, — Ayu).

last update: 3 June 2021 7/8



ETH Ziirich Functional Analysis Il D-MATH
Spring 2021 The Strong Maximum Principle Prof. A. Carlotto

Question: Can we realise K; = f € C'"°(X)? This corresponds to solving
G(r,u) i=e™f —c=—A4u

Many of the things we know about this very important problem are actually obtained
with the method of sub- and super-solutions.

Remark. This problem is still open in full generality if ¥ ~ S?.
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