2 Strong Maximum Principle

Let $\Omega \subset \mathbb{R}^n$ be an open domain and let the differential operator L be given by

$$Lu = \sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^2 u}{\partial x^i \partial x^j} + \sum_{j=1}^{n} b_j(x) \frac{\partial u}{\partial x^j} + c(x)u$$

satisfying the assumptions

- (1) bounded coefficients: $a_{ij}, b_j, c \in C^0(\overline{\Omega}),$
- (2) uniform ellipticity: there exists $\mu > 0$ such that

$$\forall x \in \Omega \quad \forall \xi \in \mathbb{R}^n : \quad \sum_{i,j=1}^n a_{ij}(x)\xi_i\xi_j \ge \mu |\xi|^2.$$

The goal is to complement the weak maximum principle Theorem with a local *rigidity* statement.

Theorem 1 (Strong Maximum Principle, Eberhard Hopf). Let $\Omega \subset \mathbb{R}^n$ be connected. Let $u \in C^2(\Omega)$ satisfy $Lu \geq 0$ in Ω . If $c \leq 0$ and if assumptions (1) and (2) hold, then

$$\left(\exists x_0 \in \Omega : \sup_{\Omega} u = u(x_0) \ge 0\right) \Rightarrow u \equiv u(x_0).$$

If $c \equiv 0$, then

$$\left(\exists x_0 \in \Omega : \sup_{\Omega} u = u(x_0)\right) \Rightarrow u \equiv u(x_0).$$

Dropping the assumption on the sign of c,

$$\left(\exists x_0 \in \Omega : \sup_{\Omega} u = u(x_0) = 0\right) \Rightarrow u \equiv 0.$$

The key step in the proof is the following lemma.

Lemma 1 (boundary point lemma, Eberhard Hopf). Let $B := B_{\rho}(y) \subset \mathbb{R}^n$ and let $u \in C^2(B) \cap C^0(\overline{B})$ satisfy $Lu \ge 0$ in B with $c \le 0$. Assume for some $x_0 \in \partial B$ that $u(x_0) \ge 0$ and $u(x) < u(x_0)$ for every $x \in B$. Then,

$$\limsup_{h \to 0} \frac{u(x_0 + h\eta) - u(x_0)}{h} < 0,$$

where η denotes the inward-pointing unit normal of B at x_0 .

If $c \equiv 0$, then the hypothesis $u(x_0) \ge 0$ can be dropped. If $u(x_0) = 0$, we can drop the assumption on the sign of the function c.

last update: 3 June 2021

1/8

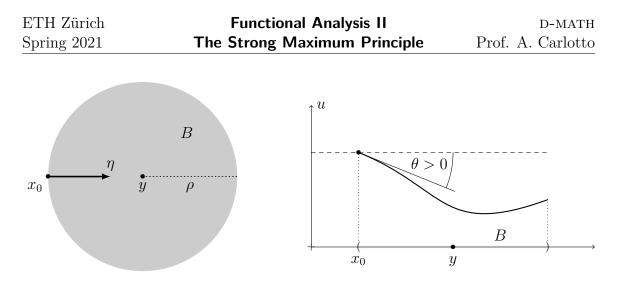


Figure 1: boundary point lemma: top view (left) and lateral view (right)

Comment. The assumption $u(x_0) > u(x)$ for all $x \in B$ implies (by basic calculus) that

$$D_{\eta}^{+}u := \limsup_{h \to 0} \frac{u(x_0 + h\eta) - u(x_0)}{h} \le 0.$$

The point of Lemma 1 is to upgrade the weak inequality $D_{\eta}^+ u \leq 0$ to the strict inequality $D_{\eta}^+ u < 0$. For that, we must use the equation, i.e. the assumption $Lu \geq 0$.

Proof of Theorem 1 given Lemma 1. Let $M := \sup_{\Omega} u$, assume this value is attained at some $x_M \in \Omega$ and let

$$S := \{ x \in \Omega : u(x) = M \}.$$

Since $u \in C^0(\Omega)$ its level set S is (relatively) closed in Ω . We claim that S is also (relatively) open in Ω . By contradiction, we assume the claim to be false. Hence, there exists $x_0 \in S$ and a sequence $(y_i)_{i \in \mathbb{N}}$ in $\Omega \setminus S$ such that $y_i \to x_0$ as $i \to \infty$. In particular, as shown in figure 2,

$$\exists \overline{y} \in \Omega \setminus S : \quad \operatorname{dist}(\overline{y}, x_0) < \operatorname{dist}(\overline{y}, \partial \Omega).$$

Moreover, by Weierstrass theorem, there exists $\overline{x} \in S$ minimizing $S \ni x \mapsto \operatorname{dist}(\overline{y}, x)$. Consequently, u satisfies the hypothesis of Lemma 1 in the ball $B_r(\overline{y})$, where $r = |\overline{x} - \overline{y}| = \operatorname{dist}(\overline{y}, S)$. Hence, $Du(\overline{x}) \neq 0$. But by the first derivative test, $Du(\overline{x}) = 0$ which is a contradiction.

Thus $S \subset \Omega$ is relatively open and closed, and certainly not empty since it contains x_M . Therefore, Ω being connected, we must conclude that $S = \Omega$ and thus u is constant.

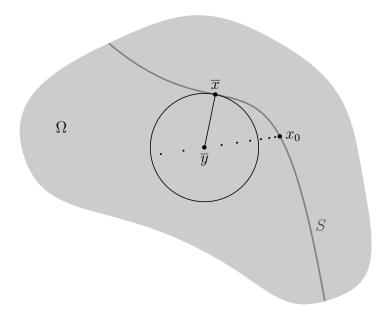


Figure 2: The setting in the proof of Theorem 1.

Proof of Lemma 1. Suppose we have already shown the general statement of the Lemma, i. e. $D_{\eta}^+ u < 0$ under the assumptions $c \leq 0$ and $u(x_0) \geq 0$. Let us discuss the two special clauses.

If $c \equiv 0$ and $Lu \geq 0$, then $L(u + \kappa) \geq 0$ for any $\kappa \in \mathbb{R}$. Pick $\kappa \gg 1$ such that $u + \kappa > 0$. In particular, $u(x_0) + \kappa > 0$ and the general statement yields

$$\limsup_{h \to 0} \frac{(u+\kappa)(x_0 + h\eta) - (u+\kappa)(x_0)}{h} = \limsup_{h \to 0} \frac{u(x_0 + h\eta) - u(x_0)}{h} < 0$$

If $u(x_0) = 0$ and $u(x_0) > u(x)$ for every $x \in B$, then $u(x) \leq 0$ for every $x \in B$. Thus,

$$0 \le Lu = \sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^2 u}{\partial x^i \partial x^j} + \sum_{j=1}^{n} b_j(x) \frac{\partial u}{\partial x^j} + (c_+ u) - (c_- u)$$
$$\le \sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^2 u}{\partial x^i \partial x^j} + \sum_{j=1}^{n} b_j(x) \frac{\partial u}{\partial x^j} - (c_- u) =: L_1 u$$

where $-c_{-}$ has the right sign, i. e. the operator L_1 satisfies the general assumptions of the Lemma, $L_1 u \leq 0$ and we obtain $D_{\eta}^+ u < 0$.

We proceed with the proof of the general statement of the lemma. Given $\alpha > 0$ to be determined and r(x) := |x - y|, we consider the function $w : \overline{B_{\rho}(y)} \to \mathbb{R}$ given by

$$w(x) = e^{-\alpha r^2} - e^{-\alpha \rho^2}$$

last update: 3 June 2021

3/8

We compute

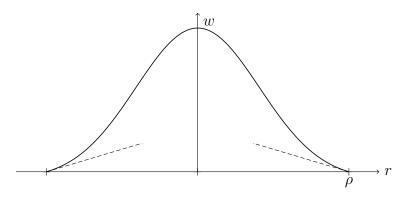


Figure 3: The graph of the function $w(r) = e^{-\alpha r^2} - e^{-\alpha \rho^2}$ for $\alpha = 3$ and $\rho = 1$.

$$Lw = e^{-\alpha r^2} \left(4\alpha^2 \sum a_{ij} (x^i - y^i) (x^j - y^j) - 2\alpha \left(\sum a_{ii} + \sum b_i (x^i - y^i) \right) \right) + cw$$

Thanks to the ellipticity assumption (with constant μ) and since $c \leq 0$, we obtain

$$Lw \ge e^{-\alpha r^2} \left(4\alpha^2 \mu r^2 - 2\alpha \left(\sum a_{ii} + \sum b_i r \right) + c \right)$$

which is a quadratic polynomial in α . Therefore, Lw > 0 in B for $\alpha > \alpha_*$. For $0 < \varepsilon \ll 1$ we set

$$v \mathrel{\mathop:}= u - u(x_0) + \varepsilon w$$

and $A := \overline{B_{\rho}(y)} \setminus B_{\frac{\rho}{2}}(y).$

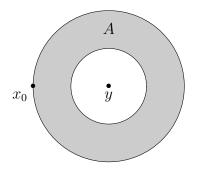


Figure 4: The set $A = \overline{B_{\rho}(y)} \setminus B_{\frac{\rho}{2}}(y)$

For $\varepsilon > 0$ small we have $v \leq 0$ on ∂A . Moreover,

$$Lv = \underbrace{Lu}_{\geq 0} \underbrace{-cu(x_0)}_{\geq 0} + \underbrace{\varepsilon Lw}_{>0} > 0.$$

last update: 3 June 2021

Hence, the weak maximum principle implies $v \leq 0$ in A. By calculus,

$$\begin{array}{l} v(x_0) = 0, \\ v \le 0 \text{ in } A \end{array} \right\} \qquad \Rightarrow D_{\eta}^+ v \le 0.$$

Consider

$$D^+_\eta v = D^+_\eta u + \varepsilon D^+_\eta w.$$

Since $D_{\eta}^+ v \leq 0$ and $\varepsilon D_{\eta}^+ w > 0$ we must have $D_{\eta}^+ u < 0$.

Remark. In the setting of this lemma, if one assumes $u \in C^1(\overline{B})$ then, in particular, there exists the directional derivative

 $\frac{\partial u}{\partial n}$

and its value equals (be definition)
$$D_{\eta}^+ u$$
.

The idea behind the proof of Lemma 1 is the elliptic barrier principle. Consider $\Omega \subset \subset \mathbb{R}^n$ and $u, g \in C^2(\Omega) \cap C^0(\overline{\Omega})$ satisfying

$$Lu \ge 0 \quad \text{in } \Omega$$
$$Lg \le 0 \quad \text{in } \Omega$$
$$g \ge u \quad \text{on } \partial \Omega$$

If $c \leq 0$, then the weak maximum principle applied to u - g yields $g \geq u$ in Ω .

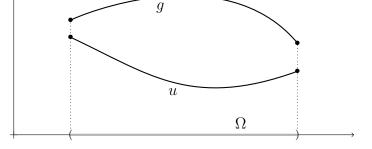


Figure 5: elliptic barrier principle

Back to Hopf: Let us revisit the argument above, and rephrase it with the language of barriers.

The goal is $v \leq 0$ on A which is equivalent to $\varepsilon w \leq u(x_0) - u(x)$ on A. Barrier principle: Choosing $0 < \varepsilon \ll 1$ we can achieve

$$\varepsilon w \le u(x_0) - u$$
 on ∂A

i.e. we can push the graph of εw below $u(x_0) - u$ such that it serves as a barrier.

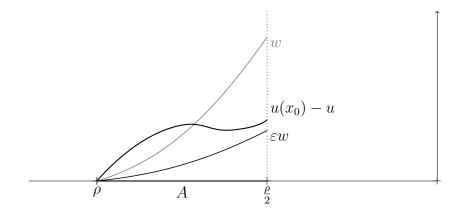


Figure 6: If $\varepsilon > 0$ is sufficiently small, then $\varepsilon w \leq u(x_0) - u$ on ∂A .

2.1 Method of sub- and supersolutions

Let $\Omega \subset \mathbb{R}^n$. Consider the non-linear problem

$$\begin{cases} Lu = G(x, u) & \text{ in } \Omega, \\ u = \psi & \text{ on } \partial\Omega. \end{cases}$$
(*)

We assume $\psi \in C^{2,\alpha}(\overline{\Omega})$ and that L is elliptic with coefficients $a_{ij}, b_j, c \in C^{0,\alpha}(\overline{\Omega})$. Finally, we further require $G \colon \overline{\Omega} \times \mathbb{R} \to \mathbb{R}$ to be C^1 . If you can find

• A subsolution φ^- , i.e. $\varphi^- \in C^{2,\alpha}(\overline{\Omega})$ satisfying

$$\begin{cases} L\varphi^- \ge G(x,\varphi^-) & \text{ in } \Omega, \\ \varphi^- \le \psi & \text{ on } \partial\Omega, \end{cases}$$

- and a supersolution φ^+ , i. e. $\varphi^+ \in C^{2,\alpha}(\overline{\Omega})$ satisfying

$$\begin{cases} L\varphi + \leq G(x, \varphi^+) & \text{in } \Omega, \\ \varphi^+ \geq \psi & \text{on } \partial\Omega. \end{cases}$$

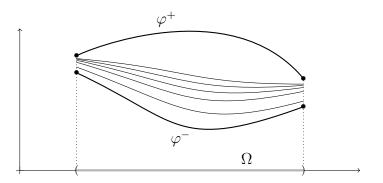


Figure 7: Approximating a solution by a sequence of subsolutions.

Then there exists a classical solution $u \in C^{2,\alpha}(\overline{\Omega})$ to problem (*).

The proof of this fact is actually a relatively simple application of the barrier principle: starting with $u_0 = \varphi^-$ one constructs, by solving linear problems, a monotone sequence of functions that are uniformly bounded by φ^+ , and thus must convergence to a fixed point of the iteration, which will be a solution of (*). We leave the details as an (optional, but highly instructive) exercise.

2.2 Application: The Kazdan–Warner problem

Let (Σ, g) be a surface of genus γ with Gauss curvature K_g given by

$$K_g = \begin{cases} +1, & \text{if } \gamma = 0, \\ 0, & \text{if } \gamma = 1, \\ -1, & \text{if } \gamma \ge 2, \end{cases}$$

and consider the conformal metric $\tilde{g} = e^{2u}g$ on Σ which has Gauss curvature

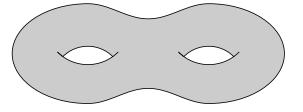


Figure 8: A surface (Σ, g) of genus $\gamma = 2$

$$K_{\tilde{g}} := e^{-2u} (K_g - \Delta_g u).$$

Question: Can we realise $K_{\tilde{g}} = f \in C^{\infty}(\Sigma)$? This corresponds to solving

$$G(x,u) := e^{2u}f - c = -\Delta_q u$$

Many of the things we know about this very important problem are actually obtained with the method of sub- and super-solutions.

Remark. This problem is still open in full generality if $\Sigma \simeq \mathbb{S}^2$.