
WEYL LAW FOR THE LAPLACIAN

RICCARDO CANIATO

Let Ω ⊂⊂ Rn be open, of class C2. We already know that the Dirichlet eigenvalues of the Laplacian
on Ω form a positive and non-decreasing sequence 0 < λ1 6 λ2 6 ... such that λj → +∞ as k → +∞.
Moreover, the following variational characterization of the j-th eigenvalue holds:

λj = inf
V⊂H1

0 (Ω)
dim(V )=j

sup
V r{0}

||∇u||2L2(Ω)

||u||2
L2(Ω)

, ∀ j ∈ N∗ = {1, 2, 3 . . .} . (1.1)

Remark 1.1. Recall that Dirichlet eigenfunctions of the Laplacian associated to different eigenvalues
are L2-orthogonal. This follows from the statement of the ‘abstract’ spectral theorem for compact self-
adjoint operators, but let us see the point in very concrete terms. Indeed, let Ω ⊂⊂ Rn be any open
subset of Rn. Assume that λ1, λ2 ∈ R are two different Dirichlet eigenvalues of the Laplacian on Ω and
let ϕ1, ϕ2 ∈ H1

0 (Ω) r {0} be eigenfunctions of the Laplacian associated to the eigenvalues λ1 and λ2

respectively, i.e. ˆ
Ω
∇ϕ1 · ∇v dLn = λ1

ˆ
Ω
ϕ1v dLn = λ1(ϕ1, v)L2(Ω),ˆ

Ω
∇ϕ2 · ∇v dLn = λ2

ˆ
Ω
ϕ2v dLn = λ2(ϕ2, v)L2(Ω),

for every v ∈ H1
0 (Ω). Thus, choosing v = ϕ2 (respectively: v = ϕ1) in the first (respectively: second)

equality one gets

(λ1 − λ2)(ϕ1, ϕ2)L2(Ω) =

ˆ
Ω
∇ϕ1 · ∇ϕ2 dLn −

ˆ
Ω
∇ϕ2 · ∇ϕ1 dLn = 0,

form which it follows that (ϕ1, ϕ2)L2(Ω) = 0.

We aim to study the asymptotic growth rate of the sequence {λj}j∈N∗ as j → +∞, i.e. we want to
characterize the rate of divergence of the sequence in question. Results on this matter (of which there
are many, even for typically non-linear phenomena such as the width spectrum determined by minimal
cycles in a compact Riemannian manifold) are often referred to as Weyl laws.

Theorem 1.1 (Weyl law for general domains). Let Ω ⊂⊂ Rn be open, of class C2 and denote by
{λj}j∈N∗ the Dirichlet eigenvalues of the laplacian on Ω. Then, there exists a constant C := C(n,Ω) > 1

such that
C−1j2/n 6 λj 6 Cj

2/n, ∀ j ∈ N∗. (1.2)

First, we notice that a Weyl law for the Laplacian can very easily be obtained in case Ω ⊂ Rn is an
n-dimensional open cube, in the following way.

Lemma 1.1 (Weyl law for cubes). Let Q ⊂ Rn be any open cube of centre c = (c1, ..., cn) ∈ Rn and
side-length 2L > 0. Let {λj}j∈N∗ be the Dirichlet eigenvalues of the laplacian on Q. Then, there exists
a constant C = C(n,L) > 1 for which (1.2) holds true.

Proof. We compute explicitly the Dirichlet spectrum of the Laplacian on Q. Notice that for every
k1, ..., kn ∈ N∗, the function

uk1...kn(x1, ..., xn) = sin

(
π

L
k1(x1 − c1)

)
· ... · sin

(
π

L
kn(xn − cn)

)

1
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is a Dirichlet eigenfunction of the Laplacian on Q associated to the eigenvalue
π2

L2
(k2

1 + ...+ k2
n).

The set

S :=
{
uk1...kn : k1, ..., kn ∈ N∗

}
is an Hilbertian basis of L2(Q) (the fact that it is an orthonormal family is a straightforward computa-
tion, while completeness is more delicate and is discussed in the Appendix A, Lemma A.1). By Remark
1.1, the sequence of eigenvalues 0 < λ1 6 λ2 6 ... is given by ordering the set{

π2

L2
(k2

1 + ...+ k2
n) : k1, ..., kn ∈ N∗

}
.

In particular, note that:

(1) the multiplicity of the eigenvalue λj =
π2

L2
(k2

1 + ...+ k2
n) in the sequence {λj}j∈N∗ is equal to

#
{

(`1, ..., `n) ∈ Nn∗ : `21 + ...+ `2n = k2
1 + ...+ k2

n

}
;

(2) the value j (indexing the eigenvalue in question) satisfies

N1(k2
1 + ...+ k2

n) < j 6 N2(k2
1 + ...+ k2

n) (1.3)

where

N1(t) := #
{

(`1, ..., `n) ∈ Nn∗ : `21 + ...+ `2n < t
}
,

N2(t) := #
{

(`1, ..., `n) ∈ Nn∗ : `21 + ...+ `2n 6 t
}
,

for every t ∈ (0,+∞).

Main Claim: there exists α = α(n) > 0 such that

α−1tn/2 6 N1(t) 6 N2(t) 6 αtn/2. (1.4)

Indeed, notice that N1(t) = #(Nn∗ ∩ St) and N2(t) = #(Nn∗ ∩ St), where

St := (0,+∞)n ∩B(0,
√
t) ⊂ Rn, (1.5)

for any fixed t ∈ (0,+∞). Then, let

‖x‖∞ = max
i=1,...,n

|xi| (x ∈ Rn)

and recall that
n−1/2‖x‖ 6 ‖x‖∞ 6 ‖x‖ ∀x ∈ Rn

where ‖ · ‖ denotes the standard Euclidean norm.

Now, consider Q1
t and Q2

t to be the open n-dimensional cubes contained in [0,+∞)n ⊂ Rn with a vertex
at the origin of Rn with side of length

√
t/n and

√
t respectively. The inequalities above, comparing

the norms ‖ · ‖ and ‖ · ‖∞ imply the inclusions

Q1
t ⊂ St ⊂ St ⊂ Q2

t .

It follows that [√
t

n
− 1

]n
= #(Nn∗ ∩Qt1) 6 N1(t) 6 N2(t) 6 #(Nn∗ ∩Qt2) =

[√
t

]n
,

where [·] denotes the (lower) integer part of a non-negative real number. Since clearly
1

2
s 6 [s− 1], and [s] 6 2s ∀ s ∈ (4,+∞),
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(although one can sharpen the first inequality quite a lot) we conclude that

1

2nnn/2
tn/2 6 N1(t) 6 N2(t) 6 tn/2 6 2nnn/2tn/2.

By picking

α = α(n) := 2nnn/2

our claim follows.

By (1.3), we then obtain the estimate

α−1

(
L2

π2
λj

)n/2
6 j 6 α

(
L2

π2
λj

)n/2
,

which inequality we can rephrase as a two-sided bound on λj :

α−2/n

(
π

L

)2

j2/n 6 λj 6 α
2/n

(
π

L

)2

j2/n.

By setting

C(n,L) := α2/n max

{
π

L
,
L

π

}2

the statement follows. �

We now use the variational characterization (1.1) of the Dirichlet eigenvalues of the Laplacian in order
to obtain the following comparison result.

Lemma 1.2. Let Ω ⊂⊂ Rn be open, of class C2. Let Q1, Q2 ⊂ Rn be n-dimensional cubes such that
Q1 ⊂ Ω ⊂ Q2. Let {λj}j∈N∗, {λ1

j}j∈N∗ and {λ2
j}j∈N∗ be the Dirichlet eigenvalues of the Laplacian

respectively on Ω, Q1 and Q2.
Then,

λ2
j 6 λj 6 λ

1
j , ∀ j ∈ N∗.

Proof. Notice that H1
0 (Q1) ⊂ H1

0 (Ω), in the sense every function u ∈ H1
0 (Q1) can be extended to a

function ũ in H1
0 (Ω) by simply setting ũ ≡ 0 on Ω rQ1 (recall the homework Problem 6.2).

Analogously, H1
0 (Ω) ⊂ H1

0 (Q2) and thus in fact

H1
0 (Q1) ⊂ H1

0 (Ω) ⊂ H1
0 (Q2) (1.6)

Fix any j ∈ N∗ and denote by Gj , G1
j and G2

j the set of all the j-dimensional subspaces of H1
0 (Ω),

H1
0 (Q1) and H1

0 (Q2) respectively. By (1.6), we get

G1
j ⊂ Gj ⊂ G2

j . (1.7)

By (1.7) and (1.1), the statement follows. �

The Weyl law for the Laplacian on general (regular enough) domains is a straightforward consequence
of Lemma 1.1 and Lemma 1.2.
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Appendix A. A useful Hilbertian basis of L2
(
(−π, π)n

)
Lemma A.1. Let Q := (−π, π)n ⊂ Rn and consider the orthonormal subset S ⊂ L2(Q) given by

S :=
{
u(x1, ..., xn) := sin(k1x1) · ... · sin(knxn) : k1, ..., kn ∈ N∗

}
.

Then,

L2(Q) = span(S).

Proof. When n = 1, the result is well-known (although highly non-trivial) and a proof can be found in
[ADPM11][Proposition 5.6]. Hence, we will focus on the case n > 2.
Consider the set

Γ :=
{

(f1 ⊗ ...⊗ fn)(x1, ..., xn) := f1(x1) · ... · fn(xn) : f1, ..., fn ∈ C0([−π, π])
}
.

We know that span(Γ) is dense in C0
(
Q
)
, by the Stone-Weierstrass theorem. Since C0

(
Q
)
is dense in

L2(Q), it is enough to prove that span(S) is dense in Γ.

Fix any f1 ⊗ ...⊗ fn ∈ Γ. By Proposition 5.6 in [ADPM11], for every fixed j = 1, ..., n it holds that

fj(xj) =
∑
hj∈N

λhj sin(khjxj), in L2(−π, π),

for some {λhj}hj∈N ⊂ R and some {khj}hj∈N ⊂ N∗. Moreover,

||fj ||2L2 =
∑
hj∈N

λ2
hj
,

since the set {sin(khjxj)}hj∈N is orthonormal in L2(−π, π). We claim that

(f1 ⊗ ...⊗ fn)(x1, ..., xn) =
∑

h1,...,hn∈N
λh1 ...λhn sin(kh1x1) · ... · sin(khnxn),

in L2(Q). The previous claim will imply that span(S) is dense in Γ and the statement will follow.

In order to prove the claim, we proceed by induction on n > 2.

Basis of the induction: we assume n = 2 and we want to show that

f1 ⊗ f2 =
∑

h1,h2∈N∗

λh1λh2 sin(kh1x1) sin(kh2x2), (A.1)

in L2(Q). For every m ∈ N, we define

sm(x1) :=

m∑
h1=1

λh1 sin(kh1x1), ∀x1 ∈ (−π, π),

qm(x2) :=

m∑
h2=1

λh2 sin(kh2x2), ∀x2 ∈ (−π, π).

We notice that

(sm ⊗ qm)(x1, x2) =
m∑

h1,h2=1

λh1λh2 sin(kh1x1) sin(kh2x2), ∀ (x1, x2) ∈ Q.

Moreover,

||sm||2L2 =

ˆ π

−π
|sm|2 dL1 =

ˆ π

−π

∣∣∣∣∣
m∑

h1=0

λh1 sin(kh1x1)

∣∣∣∣∣
2

dL1(x1)

=
m∑

h1=0

ˆ π

−π
λ2
h1 sin(kh1x1)2 dL1(x1) =

m∑
h1=0

λ2
h1 6 ||f1||2L2
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where the last two equalities follow since the set {sin(kh1x1)}h1∈N is orthonormal in L2(−π, π).
Then, we compute
ˆ
Q
|f1 ⊗ f2 − sm ⊗ qm|2 dL2 6 2

ˆ
Q
|f1 − sm|2|f2|2 dL2 + 2

ˆ
Q
|sm|2|f2 − qm|2 dL2

= 2||f2||L2

ˆ
Q
|f1 − sm|2 dL2 + 2||sm||2L2

ˆ
Q
|f2 − qm|2 dL2

= 2||f2||L2

ˆ
Q
|f1 − sm|2 dL2 + 2||f1||2L2

ˆ
Q
|f2 − qm|2 dL2 m→∞−−−−→ 0+.

Thus, the basis of the induction is proved.

Inductive step: by induction, we get that

f1 ⊗ ...⊗ fn−1

∑
h1,...,hn−1∈N

λh1 ...λhn−1 sin(kh1x1) · ... · sin(khn−1xn−1),

in L2
(
(−π, π)n−1

)
. Moreover, since the set {sin(kh1x1) · ... · sin(khn−1xn−1)}h1,...,hn−1∈N is orthonormal

in L2
(
(−π, π)n−1

)
, we get

||f1 ⊗ ...⊗ fn−1||2L2 =
∑

h1,...,hn−1∈N
λ2
h1 ...λ

2
hn−1

.

For every m ∈ N, we define

sm(x1, ..., xn−1) :=
m∑

h1,...,hn−1=0

λh1 ...λhn−1 sin(kh1x1) · ... · sin(khn−1xn−1)

qm(xn) :=
m∑

hn=0

λhn sin(khnxn).

for all (x1, ..., xn−1) ∈ (−π, π)n−1 and xn ∈ (−π, π).
We notice that

(sm ⊗ qm)(x1, ..., xn) =
m∑

h1,...,hn=0

λh1 ...λhn sin(kh1x1) · ... · sin(khnxn), ∀ (x1, ..., xn) ∈ Q.

Moreover,

||sm||2L2 =

ˆ
(−π,π)n−1

|sm|2 dLn−1

=

ˆ
(−π,π)n−1

∣∣∣∣∣
m∑

h1,...,hn−1=0

λh1 ...λhn−1 sin(kh1x1) · ... · sin(khn−1xn−1)

∣∣∣∣∣
2

dLn−1(x1, ..., xn−1)

=

m∑
h1,...,hn−1=0

ˆ
(−π,π)n−1

λ2
h1 ...λ

2
hn−1

sin(kh1x1)2 · ... · sin(khn−1xn−1)2 dLn−1(x1, ..., xn−1)

=

m∑
h1=0

λ2
h1 ...λ

2
hn−1

6 ||f1 ⊗ ...⊗ fn−1||2L2 .

where the last two equalities follow since the set {sin(kh1x1) · ... ·sin(khn−1xn−1)}h1,...,hn−1∈N is orthonor-
mal in L2((−π, π)n−1).
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Then, we computeˆ
Q
|f1 ⊗ ...⊗ fn − sm ⊗ qm|2 dLn 6 2

ˆ
Q
|f1 ⊗ ...⊗ fn−1 − sm|2|fn|2 dLn

+ 2

ˆ
Q
|sm|2|fn − qm|2 dLn

= 2||fn||L2

ˆ
Q
|f1 ⊗ ...⊗ fn−1 − sm|2 dLn

+ 2||sm||2L2

ˆ
Q
|fn − qm|2 dLn

6 2||f2||L2

ˆ
Q
|f1 − sn|2 dLn

+ 2||f1 ⊗ ...⊗ fn−1||2L2

ˆ
Q
|f2 − qn|2 dLn

m→∞−−−−→ 0+.

Hence, the inductive step is proved and the statement follows. �
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