WEYL LAW FOR THE LAPLACIAN

RICCARDO CANIATO

Let  CC R™ be open, of class C2. We already know that the Dirichlet eigenvalues of the Laplacian
on €} form a positive and non-decreasing sequence 0 < A1 < A < ... such that A\; — +o00 as £ — +o0.
Moreover, the following variational characterization of the j-th eigenvalue holds:
2
A= inf  sup %, VjieN, ={1,2,3...}. (1.1)

VCHS(Q) v~{0} H“HL2(Q)

dim(V)=j
Remark 1.1. Recall that Dirichlet eigenfunctions of the Laplacian associated to different eigenvalues
are L?-orthogonal. This follows from the statement of the ‘abstract’ spectral theorem for compact self-
adjoint operators, but let us see the point in very concrete terms. Indeed, let Q CC R™ be any open
subset of R™. Assume that A1, Ao € R are two different Dirichlet eigenvalues of the Laplacian on € and
let 1,02 € H}(Q) \ {0} be eigenfunctions of the Laplacian associated to the eigenvalues A\; and A
respectively, i.e.

/ Vgol -VovdL" = )\1/ ©1v ac" = )\1(<p1,1))L2(Q),
Q Q

/QV(,OQ - Vv d[,n = )\2 /Q Y2V d[,n = )\Q(Lpg,v)LQ(Q),

for every v € HE(Q). Thus, choosing v = ¢y (respectively: v = 1) in the first (respectively: second)
equality one gets

()\1 - )\2)((,01, QDQ)Lz(Q) = /QV(,Ol . V(,OQ dc" — /QV(,OQ . Vgol dL™ = O,
form which it follows that (41, ¥2)r2(0) = 0.

We aim to study the asymptotic growth rate of the sequence {\;};en, as j — +o00, i.e. we want to
characterize the rate of divergence of the sequence in question. Results on this matter (of which there
are many, even for typically non-linear phenomena such as the width spectrum determined by minimal
cycles in a compact Riemannian manifold) are often referred to as Weyl laws.

Theorem 1.1 (Weyl law for general domains). Let Q@ CC R™ be open, of class C? and denote by
{\j}jen, the Dirichlet eigenvalues of the laplacian on Q2. Then, there exists a constant C := C(n,§) > 1
such that

cTlAm <N <, YieN.,. (1.2)

First, we notice that a Weyl law for the Laplacian can very easily be obtained in case 2 C R" is an
n-dimensional open cube, in the following way.

Lemma 1.1 (Weyl law for cubes). Let @ C R™ be any open cube of centre ¢ = (c1,...,¢n) € R™ and
side-length 2L > 0. Let {\j}jen, be the Dirichlet eigenvalues of the laplacian on Q. Then, there exists
a constant C' = C(n, L) > 1 for which (1.2) holds true.

Proof. We compute explicitly the Dirichlet spectrum of the Laplacian on ). Notice that for every
k1, ..., kn € Ny, the function

. ™ . s
Uky. Ky (T15 -y Tp) = sin <Lk1(x1 — cl)> -...-sin (Lkn(xn — cn)>
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2
is a Dirichlet eigenfunction of the Laplacian on () associated to the eigenvalue %(kz% + ...+ k:?l)
The set

S = {Uk1kn ki, .. ky € N*}

is an Hilbertian basis of L?(Q) (the fact that it is an orthonormal family is a straightforward computa-
tion, while completeness is more delicate and is discussed in the Appendix A, Lemma A.1). By Remark
1.1, the sequence of eigenvalues 0 < A} < Ag < ... is given by ordering the set

2
{;(k%+...+k,%) : kl,...,kneN*},

In particular, note that:

2
(1) the multiplicity of the eigenvalue \; = %(k% + ...+ k2) in the sequence {\;}jen, is equal to

#{(l1, b)) END 0 B+ 2 =k + ..+ K2}
(2) the value j (indexing the eigenvalue in question) satisfies
Ni(k¥ 4 o+ k2) < j < No(ki 4 ...+ k2) (1.3)
where
Ni(t) == #{(l1,....0,) €N} = B3+ ..+ 02 <t}
No(t) == #{(l1,....0,) €N} = 65+ ..+ 02 < t},
for every t € (0, +00).

Main Claim: there exists a = a(n) > 0 such that
a2 < Ny (t) < Na(t) < at™?. (1.4)

Indeed, notice that Ny(t) = #(N? N S;) and No(t) = #(N? N S;), where
Sy := (0, +00)" N B(0,Vt) C R", (1.5)
for any fixed t € (0,400). Then, let

[2]loo = max fa] (x € R")
1= n

and recall that

nlz)| < [lzfo < 2|l V2 € R"
where || - || denotes the standard Euclidean norm.
Now, consider Q% and @Q? to be the open n-dimensional cubes contained in [0, +00)™® C R™ with a vertex
at the origin of R with side of length /t/n and \/t respectively. The inequalities above, comparing
the norms || - || and || - ||oo imply the inclusions

Ql c S, c S c Qi

It follows that

n

t n
V] =#0unah < mo < mw < v nay =[]
n
where [-] denotes the (lower) integer part of a non-negative real number. Since clearly

1
§s<[s—1], and [s] < 2s Vs e (4,400),



WEYL LAW FOR THE LAPLACIAN 3

(although one can sharpen the first inequality quite a lot) we conclude that

1

n

By picking
o = an) = 2"n"/?

our claim follows.

By (1.3), we then obtain the estimate

B L2 n/2 . LZ n/2
a”! <2)‘j> Sisa <2Aj> ,

s s

which inequality we can rephrase as a two-sided bound on A;:

2 2
a2/n<z> JQ/n < )‘j < a2/n (71-) j2/n

L
By setting
)2
C(n, L) := o™ max {W, }
L'«
the statement follows. O

We now use the variational characterization (1.1) of the Dirichlet eigenvalues of the Laplacian in order
to obtain the following comparison result.

Lemma 1.2. Let Q CC R” be open, of class C%. Let Q1,Q2 C R™ be n-dimensional cubes such that
Q1 C Q C Q2. Let {\j}jen,, {)\}}jeN* and {/\?}jeN* be the Dirichlet eigenvalues of the Laplacian
respectively on 2, Q1 and Qo.

Then,

A< A <A, Vj eN,.
Proof. Notice that H}(Q1) C HE(2), in the sense every function u € H}(Q1) can be extended to a

function @ in H(£2) by simply setting @ = 0 on  \ Q; (recall the homework Problem 6.2).
Analogously, H} () C H}(Q2) and thus in fact

Hy(Q1) € Hy(Q) € Hy(Q2) (1.6)

Fix any j € N, and denote by Gj, G]l and G? the set of all the j-dimensional subspaces of Hg(Q),
H(Q1) and HE(Q2) respectively. By (1.6), we get

Gj CG; CG3. (1.7)

By (1.7) and (1.1), the statement follows. O

The Weyl law for the Laplacian on general (regular enough) domains is a straightforward consequence
of Lemma 1.1 and Lemma 1.2.
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APPENDIX A. A USEFUL HILBERTIAN BASIS OF L*((—m,m)")

Lemma A.1. Let Q := (—m,7)" C R" and consider the orthonormal subset S C L*(Q) given by
S = {u(azl, ey @) = sin(kyxy) - ... sin(kpxy) o k1, ky € N*}.
Then,

L*(Q) = span(S).

Proof. When n = 1, the result is well-known (although highly non-trivial) and a proof can be found in
[ADPM11|[Proposition 5.6]. Hence, we will focus on the case n > 2.
Consider the set

I':= {(fl ® e @ fr) (@1, ey p) = fr(z1) - oo fu(zn) o f1, fn € CO([_”vF])}'

We know that span(T) is dense in C° (@), by the Stone-Weierstrass theorem. Since C° (@) is dense in
L?(Q), it is enough to prove that span(S) is dense in T

Fix any fi ® ... ® f,, € I'. By Proposition 5.6 in [ADPM11], for every fixed j = 1,...,n it holds that
fi(zy) Z An; sin(kp;7j), in L?(—m, ),
h;eN

for some {An; n,en C R and some {kp; }5;en C Ni. Moreover,

Hf]”%? = Z A%Lj’

h]‘EN
since the set {sin(kp,;7;)}n,en is orthonormal in L?(—7, 7). We claim that
(f1®~-'®fn)(x1a-~-a$n) = Z >‘h1"')‘hn Sin(khll‘l)""'Sin(khnxn)v

hlv---vhneN

in L?(Q). The previous claim will imply that span(S) is dense in I' and the statement will follow.

In order to prove the claim, we proceed by induction on n > 2.

Basis of the induction: we assume n = 2 and we want to show that
f1 ® f2 = Z )‘hl)‘hz sin(khlxl) sin(kthz), (Al)
hi,ha€N,

in L?(Q). For every m € N, we define

Sm(x1) == Z Ay sin(kp, 1), Vay € (—m,m),
hi1=1

qm(z2) == Z Ay sin(kp,z2), Vag € (—m,m).
ha=1

We notice that

(8m @ qm) (21, 2) Z Ahy Ang sin(kp, x1) sin(kp,z2), V(z1,x2) € Q.

h1,h2=1
m
Z /\h1 sin(khlxl)

s s
5l 22 = / sml?dL} = /
-7 =7 | hy=0

= Z )‘h sin k’hll'l d£1($1) = Z )\il < ||f1”%2

h1=0 h1=0

Moreover,

2
dﬁl (a:l)
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where the last two equalities follow since the set {sin(kp,1)}n,en is orthonormal in L?(—m, 7).
Then, we compute

L1500 fa = s @ anPde? <2 [ 1= suPLAfdc? +2 [ [snfl — anf? at?
Q 0 o
= 2lfalzs [ 11 = sl 22 + 2Nl [ 1o~ anf?ag?
@ Q
=2|f2||L2/Q!f1—sm|2d£2+2||f1\|%2/Q|fz—qm|2d£2 I g,

Thus, the basis of the induction is proved.

Inductive step: by induction, we get that

A®®fat Y AnyeAn, sin(hp ) - sin(kn, ,2no1),

R yershy—1EN
in L?((—m, )" ). Moreover, since the set {sin(kn,21) - ... - sin(kn,_,Zn—1)}h,,....h,_,en is orthonormal
in L((—m,m)" 1), we get
i@ fuallam S M
hi,....,hpn—1EN
For every m € N, we define
m
Sm(X1y ey Tp) 1= Z Ahy oA,y sin(kp, 1) - ... - sin(kp, , Tn—1)
hi,..,hn—1=0

Gm(xn) = Z A, sin(kp, Tp ).

hn=0

for all (z1,...,2p—1) € (=7, 7)" ! and z,, € (—m, 7).
We notice that

(Sm @ qm)(T1, ooy Tn) = Z Ahy Ay, sin(kp, z1) - ... sin(kp, @), V(x1, ...y xn) € Q.
By =0

Moreover,

o M
—m,m)"

m 2
= / My A,y sin(kp, 1) - osin(kp,_ @po1)| AL (21, oy 2p1)
(=mmm=t h1,....hn—1=0
= Z / - Ap A sin(kpyan)? - sin(k,  @n-1)2dL T (@, Tn1)
hi,....;hn—1=0 ™

= Z )\%Ll"')\%ln—l < Hfl X ... ®fn_1H%2.

h1=0

where the last two equalities follow since the set {sin(kp,x1)-...-sin(kn, ,Zn—1)}h.... h,_ N is orthonor-
mal in L?((—n,7)""1).
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Then, we compute

/ ’fl @ ... ®fn — Sm ®Qm‘2 dc" < 2/ ‘fl X ... ®fn—1 - Sm’2|fn‘2d[,n
Q Q
+2/ |5 2| frn — @m|? dL™
Q
:2|fn|L2/ ’fl ® ... ® fno1 —Sm‘2 dLm
Q
+ 2ol [ 10— anl? 2"
Q
<2|f2|’L2/Q|f1—8n|2d/5n

21 @@ fualls [ 12— aaP dL” 22 07
Q

Hence, the inductive step is proved and the statement follows. O
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