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1.1. The Dirichlet energy
(a) Apply integration by parts and Holder’s inequality.
(b) Use (a).

(c) Prove that the boundary of every connected component of €2 is a non-empty subset
of the boundary of €.

1.2. The p-energy
(a) Exploit that the mapping R" > x +— |z|? is strictly convex.

(b) Given any ¢ € C?(2) with ¢|aq = 0, compute 4| _ E,(u + tp).
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Express the integrand as |Vu|P = |Vu|P~?Vu - Vu and integrate by parts. Prove and use
the inequality (Au)? < n|D?u|?. Then apply Hélder’s inequality in the form
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1.3. Laplace’s equation
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(a) Find and solve the ordinary differential equations for v(x) and w(y).

(b) Consider non-constant boundary data which are constant along two sides.

1.4. Mean-value property
(a) For y € 2 and suitable R > 0, consider the function ¢: |0, R[ — R given by

o(r) = ]éB w uwdo = ][831(0) w(y + rz)do(z).

Argue that ¢(r) must be constant in r, compute ¢'(r) and conclude that u is harmonic.
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(b) Prove that ¢(r) is constant if u is harmonic. Conclude

and show how this implies

1.5. Liouville’s theorem

(a) Exploit the mean-value property in balls of large radius.

(b) Compare the values of u at two different points using the mean-value property.

1.6. Harnack’s inequality

Cover ) with balls of sufficiently small radius and exploit the mean-value property.
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