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1.1. The Dirichlet energy

(a) Since u ∈ C2(Ω) with u|∂Ω = 0 we may integrate by parts with vanishing boundary
terms: ∫

Ω
|∇u|2 dx = −

∫
Ω
u∆u dx ≤

∫
Ω
|u||∆u| dx ≤

(∫
Ω
u2 dx

) 1
2
(∫

Ω
(∆u)2 dx

) 1
2
.

The last estimate is Cauchy-Schwarz inequality.

(b) Fist, notice that any proper and open subset A of Rn has non vanishing boundary.
Indeed, by contradiction, assume ∂A = ∅. Then A = Å = A, which means that A is both
open and closed. But since Rn is connected, this contradicts that fact that A is proper.
Since Ω is non-empty and bounded, then Ω is proper. By what we have shown so far,
this leads to ∂Ω 6= ∅. If u ∈ C2(Ω) with u|∂Ω = 0 satisfies ∆u = 0 in Ω, then∫

Ω
|∇u|2 dx = −

∫
Ω
u∆u dx = 0.

Since |∇u(x)|2 ≥ 0 for every x ∈ Ω we conclude |∇u|2 = 0 in Ω. Since Ω is connected,
then u is constant in Ω. By continuity, this constant must agree with the value of u on
∂Ω; hence u ≡ 0.

(c) Yes, both statements still hold. Indeed, in (a) we have never used the connectedness
of Ω. For what concerns (b), we still obtain ∇u = 0 in Ω, which implies that u is constant
on every connected component of Ω.
Let Ω′ ⊂ Ω be any connected component of Ω. Clearly, Ω′ is non-empty and bounded.
Since Rn is locally connected, Ω′ is also open and thus ∂Ω′ 6= ∅, following the same
argument ad above. Moreover, it follows easily that ∂Ω′ ⊂ ∂Ω. Then, u is constant in Ω′,
∂Ω′ 6= ∅ and u|∂Ω′ = 0. By continuity, this implies u = 0 in Ω′. By arbitrariness of Ω′,
the statement follows.

1.2. The p-energy
Let ∅ 6= Ω ⊂ Rn be open, bounded and regular, 2 ≤ p <∞ and g ∈ C2(∂Ω). Consider

Ep(u) :=
∫

Ω
|∇u|p dx, A := {u ∈ C2(Ω) | u|∂Ω = g}.

(a) Suppose u1, u2 ∈ A both satisfy

Ep(u1) = Ep(u2) = m =: inf
v∈A

Ep(v).

Since for p ≥ 2 the mapping Rn 3 v 7→ |v|p is strictly convex, we have∣∣∣∣v1 + v2

2

∣∣∣∣p < |v1|p + |v2|p

2
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for every v1, v2 ∈ Rn with v1 6= v2. If ∇u1 6= ∇u2 in a set of positive measure, then

Ep

(
u1 + u2

2

)
=
∫

Ω

∣∣∣∣∇u1 +∇u2

2

∣∣∣∣p dx < ∫
Ω

|∇u1|p + |∇u2|p

2 dx = m,

which is a contradiction to u1 and u2 being minimisers of Ep.
Consequently, ∇u1 = ∇u2 a.e. on Ω. Then, by continuity, ∇u1 = ∇u2 on Ω, which
means that u1−u2 is constant in every connected component of Ω. Since (u1−u2)|∂Ω = 0,
by the same argument that we have used in the previous exercise we conclude u1 = u2 in
Ω.

(b) Suppose, u ∈ A is a minimiser of Ep. Let ϕ ∈ C2(Ω) satisfy ϕ|∂Ω = 0. Then
u+ tϕ ∈ A for every t ∈ R. Moreover,

d

dt

∫
Ω
|∇u+ t∇ϕ|p dx = p

∫
Ω
|∇u+ t∇ϕ|p−2(∇u+ t∇ϕ) · ∇ϕdx

In particular,

0 = d

dt

∣∣∣∣
t=0
Ep(u+ tϕ) = p

∫
Ω
|∇u|p−2∇u · ∇ϕdx = −p

∫
Ω

div
(
|∇u|p−2∇u

)
ϕdx

for every ϕ ∈ C2(Ω) with ϕ|∂Ω = 0. Hence, by the fundamental lemma of calculus of
variations, − div

(
|∇u|p−2∇u

)
= 0 a.e. in Ω. By continuity, − div

(
|∇u|p−2∇u

)
= 0 in Ω.

(c) For every u ∈ C2(Ω) with u|∂Ω = 0 there holds∫
Ω
|∇u|p dx =

∫
Ω
|∇u|p−2∇u · ∇u dx = −

∫
Ω

div
(
|∇u|p−2∇u

)
u dx

= −
∫

Ω

(
(p− 2)|∇u|p−4

(
D2u(∇u,∇u)

)
+ |∇u|p−2∆u

)
u dx

≤
(
p− 2 +

√
n
) ∫

Ω
|∇u|p−2|D2u||u| dx,

where (∆u)2 ≤ n|D2u|2 is used. Indeed, with ∂u
∂xj

=: uj and ∂2u
∂xj∂xk

=: ujk, we have

∣∣∣D2u(∇u,∇u)
∣∣∣ =

∣∣∣∣ n∑
j=1

uj
n∑
k=1

ujkuk

∣∣∣∣ ≤ ( n∑
j=1

u2
j

) 1
2
( n∑
j=1

( n∑
k=1

ujkuk
)2
) 1

2

≤ |∇u|
( n∑
j=1

( n∑
k=1

u2
jk

)( n∑
k=1

u2
k

)) 1
2

= |∇u|2
( n∑
j=1

n∑
k=1

u2
jk

) 1
2

= |∇u|2|D2u|,

(∆u
n

)2
=
(
u11 + . . .+ unn

n

)2
≤ u2

11 + . . .+ u2
nn

n
≤ 1
n

n∑
j=1

n∑
k=1

u2
jk = 1

n
|D2u|2.
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Applying Hölder’s inequality with 1 = p−2
p

+ 1
p

+ 1
p
, we obtain

∫
Ω
|∇u|p dx ≤

(
p− 2 +

√
n
)(∫

Ω
|∇u|p dx

) p−2
p
(∫

Ω
|D2u|p dx

) 1
p
(∫

Ω
|u|p dx

) 1
p

,

⇒
(∫

Ω
|∇u|p dx

) 2
p

≤
(
p− 2 +

√
n
)(∫

Ω
|D2u|p dx

) 1
p
(∫

Ω
|u|p dx

) 1
p

,

⇒
∫

Ω
|∇u|p dx ≤

(
p− 2 +

√
n
) p

2
(∫

Ω
|D2u|p dx

) 1
2
(∫

Ω
|u|p dx

) 1
2
.

1.3. Laplace’s equation

(a) If u ∈ C2(Ω) is of the form u(x, y) = v(x)w(y), then

(∆u)(x, y) = v′′(x)w(y) + v(x)w′′(y).

Assume that ∆u = 0. Define

I := {x ∈ ]a, b[ s.t. v(x) 6= 0}

and

J := {y ∈ ]c, d[ s.t. w(y) 6= 0}.

Since I and J are both open (by continuity of v and w), then Q := I × J is an open
subset of Ω. Then, at every (x, y) ∈ Q we obtain

v′′(x)
v(x) = −w

′′(y)
w(y) . (‡)

Since the left hand side depends only on x and the right hand side only on y, the equation
requires both sides to be constant. More precisely,

v′′(x)
v(x) = κ = −w

′′(y)
w(y)

at every (x, y) ∈ Ω, where v(x)w(y) 6= 0. The resulting equations

v′′(x) = κv(x), w′′(y) = −κw(y)

can be solved separately by distinguishing three cases.

last update: 21 April 2021 3 3/6



d-math
Prof. A. Carlotto

Functional Analysis II
Solution to Problem Set 1

ETH Zürich
Spring 2021

Case 1. κ = λ2 for some λ > 0. Then, with constants C1, C2, C3, C4 ∈ R

v(x) = C1eλx + C2e−λx, w(y) = C3 sin(λy) + C4 cos(λy).

Case 2. κ = 0. Then, with constants C1, C2, C3, C4 ∈ R

v(x) = C1x+ C2, w(y) = C3y + C4.

Case 3. κ = −λ2 for some λ > 0. Then, with constants C1, C2, C3, C4 ∈ R

v(x) = C1 sin(λx) + C2 cos(λx), w(y) = C3eλy + C4e−λy.

Clearly, all the functions that we have found so far actually belong to C2(Ω). Moreover, a
direct computation shows that they are all harmonic in all of Ω, not only on Q. Since we
know that u|Q coincides with the restriction to Q of one of these functions, the statement
follows directly by the unique continuation principle.

(b) Let a, b, c, d ∈ R with a < b and c < d and let Ω := ]a, b[ × ]c, d[ ⊂ R2. Let
u0 ∈ C2(∂Ω) be non-constant satisfying

∀x ∈ [a, b] u0(x, c) = 1, ∀y ∈ [c, d] u0(b, y) = 1.

Then, any function u(x, y) = v(x)w(y) in Ω with u|∂Ω = u0 must satisfy

∀x ∈ [a, b] 1 = u0(x, c) = u(x, c) = v(x)w(c) ⇒ v(x) = 1
w(c) ,

∀y ∈ [c, d] 1 = u0(b, y) = u(b, y) = v(b)w(y) ⇒ w(y) = 1
v(b) .

In particular, both v and w must be constant. This however is in contradiction to u0
being non-constant.

x

y

+1

a

b

c

d

u0

Ω = ]a, b[× ]c, d[
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1.4. Mean-value property

(a) Let Ω ⊂ Rn be open. Let y ∈ Ω and R > 0 such that such that BR(y) ⊂ Ω. Given
u ∈ C2(Ω), we define φ : ]0, R[→ R by

φ(r) = −
∫
∂Br(y)

u dσ = −
∫
∂B1(0)

u(y + rz) dσ(z)

and compute

φ′(r) = −
∫
∂B1(0)

d

dr

(
u(y + rz)

)
dσ(z) = −

∫
∂B1(0)

z · ∇u(y + rz) dσ(z)

= −
∫
∂Br(y)

ξ − y
r
· ∇u(ξ) dσ(ξ) = r

n
−
∫
Br(y)

∆u dx, (†)

where the divergence theorem applies because ν = ξ−y
r

is the outward unit normal vector
along ∂Br(y). If u satisfies the mean-value property, φ is constant. In particular,

0 = φ′(r) = r

n
−
∫
Br(y)

∆u dx. (∗)

By assumption, ∆u is continuous. If ∆u 6= 0, there exist y ∈ Ω and r > 0 such that
either ∆u < 0 in Br(y) or ∆u > 0 in Br(y) which contradicts (∗) in both cases.

(b) Let u ∈ C2(Ω) be harmonic. As in (a) let y ∈ Ω and R > 0 such that BR(y) ⊂ Ω.
Since ∆u = 0, equation (†) in part (a) yields

φ′(r) = r

n
−
∫
Br(y)

∆u dx = 0 (1)

which implies that the map φ : ]0, R[→ R given by

φ(r) = −
∫
∂Br(y)

u dσ

is constant in r. In particular,

−
∫
∂Br(y)

u dσ = lim
r→0
−
∫
∂Br(y)

u dσ = u(y)

which proves the first part of the mean-value property. Moreover,

−
∫
Br(y)

u dx = 1
|Br|

∫ r

0

(∫
∂Bρ(y)

u dσ
)
dρ = 1

|Br|

∫ r

0
|∂Bρ|

(
−
∫
∂Bρ(y)

u dσ
)
dρ

= u(y)
|Br|

∫ r

0
|∂Bρ| dρ = u(y)

which proves the second part of the mean-value property.
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1.5. Liouville’s theorem

(a) Let u ∈ C2(Rn) be harmonic and u ∈ L1(Rn). Let Br(y) ⊂ Rn be the open ball of
radius r > 0 around y. The mean-value property proven in problem 1.4 (b) implies

|u(y)| =
∣∣∣∣−∫
Br(y)

u dx

∣∣∣∣ ≤ 1
|Br|

∫
Br(y)
|u| dx ≤ 1

|Br|
‖u‖L1(Rn)

r→∞−−−→ 0.

Since y ∈ Rn is arbitrary, we obtain u ≡ 0.

(b) Let u ∈ C2(Rn) be harmonic and |u| ≤ c0. Let y, z ∈ Rn be two arbitrary points
and ρ := |y − z|. Then, for every r > ρ, the mean-value property implies

u(y)− u(z) = −
∫
Br(y)

u dx− −
∫
Br(z)

u dx

= 1
|Br|

∫
Br(y)\Br(z)

u dx− 1
|Br|

∫
Br(z)\Br(y)

u dx

≤ 2c0

|Br|
|Br(y) \Br(z)| ≤ 2c0 ρ |BRn−1

r |
|BRn

r |
r→∞−−−→ 0

i. e. u(y) ≤ u(z). By switching the roles of y and z we also obtain u(z) ≤ u(y), i. e.
u(y) = u(z). Since y, z ∈ Rn are arbitrary, we conclude that u is constant.

•
y

•
zρ

ρ r

1.6. Harnack’s inequality
Given the open set Ω ⊂ Rn and the connected open subset Q ⊂ Ω such that Q ⊂ Ω,
let r = 1

4 dist(Q, ∂Ω) > 0. Let u ∈ C2(Ω) be harmonic. According to the mean-value
property proven in problem 1.4 (b) and since u is non-negative,

u(y) = 1
|B2r|

∫
B2r(y)

u dx ≥ 1
|B2r|

∫
Br(z)

u dx = 1
2n|Br|

∫
Br(z)

u dx = 1
2nu(z)

for any y, z ∈ Q with |z − y| < r. Since Q is connected and compact, there exist
finitely many x1, . . . , xm ∈ Q such that Q ⊂ ⋃m

i=1Br(xi) and such that |xi − xi+1| < r
for i = 2, . . . ,m. Consequently,

∀x, y ∈ Q u(x) ≥ 2−n(m+1)u(y) ⇒ sup
Q
u ≤ 2n(m+1) inf

Q
u.
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