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2.1. Weak derivative in L?(Q2)

(a) Omne implication is based on Hélder’s inequality. For the converse implication, recall
that (L9(2))* for 1 < ¢ < oo is isometrically isomorphic to LP(€2).

(b) Given ¢ € C*(R) and u = 19,11, compute / u ' dr.
R

2.2. The ice-cream cone

(a) Fix ¢ € C°(Q2) and pick a small positive constant 0 < ¢ < 1. Observe that
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with
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Integrate by parts in the integral I.. What happens at the limit ¢ — 077
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2.3. Cantor function

(a) Measure the set A, = {x €]0,1[| u,(x) # 0 or u, (z) does not exist}.
(b) Construct ¢y such that u is constant in each component of the support of ¢j..

(c) If the distributional derivative u’ of u vanishes, then u' = 0 would be the weak first
derivative of u in L*(]0, 1[).

2.4. Symmetry of Green’s function
If G is Green’s function for Q and ¢ € C°(2), then according to the Theorem

Au=¢ inQ
:>{ug01n,

u(x) = /Q G, y)e(y) dy w=0 on .

2.5. Green’s function for the half-space
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Given any fixed x € R, solve the boundary-value problem
{ A¢® =0 in R,
¢"(y) = @y —x) forye IR}

explicitly by constructing ¢* with the help of ®.

2.6. Green’s function for an interval
(a) With @ for n = 1, solve the boundary-value problem
(¢")" =0 in Ja, bf,
{eﬁx(y) =®(z —y) forye{ab}.
explicitly.
(b) Use the formula for G(z,y) derived in part (a).
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