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2.1. Weak derivative in Lp(Ω)

(a) Let u ∈ L1
loc(Ω). Given 1 < p ≤ ∞, let 1 ≤ q < ∞ such that 1

p
+ 1

q
= 1. Suppose

Dαu exists as weak derivative in Lp(Ω). Let ϕ ∈ C∞c (Ω) be arbitrary. Then,∣∣∣∣∫
Ω
uDαϕdx

∣∣∣∣ =
∣∣∣∣(−1)|α|

∫
Ω

(Dαu)ϕdx
∣∣∣∣ ≤ ‖Dαu‖Lp(Ω)‖ϕ‖Lq(Ω)

by Hölder’s inequality which proves the first claim with constant C = ‖Dαu‖Lp(Ω).
Conversely, suppose

∀ϕ ∈ C∞c (Ω) :
∣∣∣∣∫

Ω
uDαϕdx

∣∣∣∣ ≤ C‖ϕ‖Lq(Ω).

Then, since C∞c (Ω) is dense in Lq(Ω) for q <∞, the map

f : ϕ 7→ (−1)|α|
∫

Ω
uDαϕdx

defines a continuous linear functional f ∈ (Lq(Ω))∗. Since (Lq(Ω))∗ for 1 ≤ q < ∞ is
isometrically isomorphic to Lp(Ω), there exists g ∈ Lp(Ω) such that

∀ϕ ∈ Lq(Ω) : f(ϕ) =
∫

Ω
gϕ dx.

By definition of f it follows that g ∈ Lp(Ω) is the weak derivative Dαu of u.

(b) Let u = χ]0,1[ and ϕ ∈ C∞c (R). Then∣∣∣∣∫
R
uϕ′ dx

∣∣∣∣ =
∣∣∣∣∫ 1

0
ϕ′ dx

∣∣∣∣ =
∣∣∣ϕ(1)− ϕ(0)

∣∣∣ ≤ 2‖ϕ‖L∞(R).

The function u restricted to R \ {0, 1} is differentiable with vanishing derivative. In
particular, if u had a weak derivative u′ ∈ L1

loc(R), then u′ = 0 almost everywhere. A
contradiction arises for test functions ϕ ∈ C∞c (R) with ϕ(0) 6= ϕ(1) via

0 =
∫
R
u′ϕdx = −

∫
R
uϕ′ dx = −

∫ 1

0
ϕ′ dx = ϕ(0)− ϕ(1).

2.2. The ice-cream cone

(a) Fix any ϕ ∈ C∞c (Ω) and pick a small positive constant 0 < ε < 1. Then, define

Iε := −
∫

ΩrBε(0)
u(x, y)∂ϕ

∂x
(x, y) dx dy = −

∫
ΩrBε(0)

(
1−

√
x2 + y2

)∂ϕ
∂x

(x, y) dx dy
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and

Jε := −
∫
Bε(0)

u(x, y)∂ϕ
∂x

(x, y) dx dy = −
∫
Bε(0)

(
1−

√
x2 + y2

)∂ϕ
∂x

(x, y) dx dy.

Clearly,

|Jε| =
∣∣∣∣∣
∫
Bε(0)

(
1−

√
x2 + y2

)∂ϕ
∂x

(x, y) dx dy
∣∣∣∣∣ ≤ π‖∇ϕ‖L∞(Ω)ε

2 → 0

as ε→ 0+. On the other hand, since u is smooth on ΩrBε(0), we can integrate by parts
in the integral Iε to get

Iε =
∫
∂Bε(0)

(
1−

√
x2 + y2

)
ϕ(x, y)x

ε
dσ −

∫
ΩrBε(0)

x√
x2 + y2ϕ(x, y) dx dy

= (1− ε)
∫
∂Bε(0)

ϕ(x, y)x
ε
dσ −

∫
ΩrBε(0)

x√
x2 + y2ϕ(x, y) dx dy.

Notice that ∣∣∣∣∣(1− ε)
∫
∂Bε(0)

ϕ(x, y)x
ε
dσ

∣∣∣∣∣ ≤ 2π‖ϕ‖L∞(Ω)(1− ε)ε→ 0

as ε→ 0+. Moreover, since∣∣∣∣∣
∫

Ω

x√
x2 + y2ϕ(x, y) dx dy

∣∣∣∣∣ ≤ ‖ϕ‖L∞(Ω)

(∫ 2π

0
| cos θ| dθ

)
·
(∫ 1

0
rdr

)
= 2‖ϕ‖L∞(Ω) < +∞,

by dominated convergence we get

−
∫

ΩrBε(0)

x√
x2 + y2ϕ(x, y) dx dy → −

∫
Ω

x√
x2 + y2ϕ(x, y) dx dy,

as ε→ 0+. Thus,

Iε + Jε → −
∫

Ω

x√
x2 + y2ϕ(x, y) dx dy.

But since

Iε + Jε = −
∫

Ω
u(x, y)∂ϕ

∂x
(x, y) dx dy,

for every 0 < ε < 1, by uniqueness of the limit we obtain

−
∫

Ω
u(x, y)∂ϕ

∂x
(x, y) dx dy = −

∫
Ω

x√
x2 + y2ϕ(x, y) dx dy.
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Since Ω has finite measure, it holds that L∞(Ω) ↪→ Lp(Ω) continuously for every p ∈
[1,∞), and so it follows that such weak partial derivative of u exists in Lp(Ω) for every
p ∈ [1,∞] and is given by

∂u

∂x
(x, y) = − x√

x2 + y2 a.e. on Ω.

Analogous conclusions hold for the weak partial derivative with respect to y of u on Ω,
which is given by

∂u

∂y
(x, y) = − y√

x2 + y2 a.e. on Ω.

(b) First, notice that

|∇u|2 =
∣∣∣∣∣∂u∂x

∣∣∣∣∣
2

+
∣∣∣∣∣∂u∂y

∣∣∣∣∣
2

= 1 a.e. on Ω.

Thus,

‖∇u‖Lp(Ω) = π1/p ∀ p ∈ [1,∞)

and

‖∇u‖L∞(Ω) = 1.

2.3. Cantor function

(a) The set An = {x ∈ ]0, 1[ : u′n(x) 6= 0 or u′n(x) does not exist classically} is a union
of relatively closed subintervals of equal length. With each iteration n  n + 1 the
number of intervals doubles but their length is divided by three. Therefore,

lim
n→∞
|An| = lim

n→∞
(2

3)n = 0.

By definition of u, we have {x ∈ ]0, 1[ : u′(x) = 0 exists classically} ⊃ ]0, 1[ \ An for
every n ∈ N. Thus, u′(x) = 0 in a set of full measure, i. e. for almost every x ∈ ]0, 1[.

(b) Given 2 ≤ k ∈ N, let ϕk ∈ C∞c (]0, 1[) be such that

ϕk(x) =


0 for x ≤ (1

3)k,
1 for 2(1

3)k ≤ x ≤ 1− 2(1
3)k,

0 for x ≥ 1− (1
3)k.
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Then, since

u(x) =

(1
2)k for (1

3)k < x < 2(1
3)k,

1− (1
2)k for 1− 2(1

3)k < x < 1− (1
3)k

and since ϕ′(x) vanishes outside this range, there holds

−
∫ 1

0
u(x)ϕ′k(x) dx = −(1

2)k
∫ 2( 1

3 )k

( 1
3 )k

ϕ′(x) dx−
(
1− (1

2)k
) ∫ 1−( 1

3 )k

1−2( 1
3 )k

ϕ′(x) dx

= −(1
2)k +

(
1− (1

2)k
)

k→∞−−−→ 1.

+
0

+
1
3

+
(1

3)2
+
2
3

+
1

+1

+1
2

+(1
2)2

ϕ2

u

Lastly, suppose the distributional derivative u′ of u vanishes. Then u′ = 0 would be the
weak first derivative of u in L1(]0, 1[). However, ‖u′‖L1(]0,1[) = 0 is in contradiction to

‖u′‖L1(]0,1[) ≥ lim
k→∞

∫ 1

0
u′ϕk dx = − lim

k→∞

∫ 1

0
uϕ′k dx = 1.

2.4. Symmetry of Green’s function
Let G be Green’s function for Ω ⊂ Rn and let ϕ, ψ ∈ C∞c (Ω) be arbitrary. Consider the
functions u, v : Ω→ R given by

u(x) =
∫

Ω
G(x, y)ϕ(y) dy, v(x) =

∫
Ω
G(x, y)ψ(y) dy.

According to the Theorem about Green’s function, they satisfy{
−∆u = ϕ in Ω,

u = 0 on ∂Ω.

{
−∆v = ψ in Ω,

v = 0 on ∂Ω.
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Therefore, ∫
Ω

∫
Ω
G(x, y)ϕ(y)ψ(x) dx dy −

∫
Ω

∫
Ω
G(y, x)ϕ(y)ψ(x) dx dy

=
∫

Ω
u(x)ψ(x) dx−

∫
Ω
v(y)ϕ(y) dy

= −
∫

Ω
u∆v dx+

∫
Ω
v∆u dx = −

∫
Ω
u∆v dx+

∫
Ω

(∆v)u dx = 0,

where we used integration by parts and v|∂Ω = 0 = u|∂Ω in the last line. Since ϕ and ψ
are arbitrary, symmetry of G follows.

2.5. Green’s function for the half-space
Given x = (x1, . . . , xn−1, xn) ∈ Rn

+, let x = (x1, . . . , xn−1,−xn) denote its reflection in
the plane ∂Rn

+. Let Φ: Rn \ {0} → R be the fundamental solution of Laplace’s equation
as given on the problem set. Then the function

φx(y) := Φ(y − x) = Φ(y1 − x1, . . . , yn−1 − xn−1, yn + xn)

satisfies {
∆φx = 0 in Rn

+,
φx(y) = Φ(y − x) for y ∈ ∂Rn

+

because y − x 6= 0 for every y ∈ Rn
+ and since by symmetry of Φ

∀y ∈ ∂Rn
+ : Φ(y − x) = Φ(y − x) = Φ(y − x) = Φ(y − x) = φx(y).

Hence, Green’s function for the upper half-space is

G(x, y) = Φ(y − x)− φx(y) = Φ(y − x)− Φ(y − x)

=

−
1

2π

(
log|y − x| − log|y − x|

)
, (n = 2)

1
n(n−2)|B1|

(
|y − x|2−n − |y − x|2−n

)
, (n 6= 2).

Remark. Since the domain Rn
+ is unbounded, the representation formula (as given on the

problem set) for solutions of the equation −∆u = f in Rn
+ with boundary data u|∂Rn

+
= g

has to be checked separately.

2.6. Green’s function for an interval

(a) For n = 1, the fundamental solution of Laplace’s equation is Φ: R1 → R given by

Φ(x) = −1
2 |x|.
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Given x ∈ ]a, b[, it remains to solve the boundary-value problem{
(φx)′′ = 0 in ]a, b[,
φx(y) = −1

2 |x− y| for y ∈ {a, b}.

We obtain φx(y) = c1 + c2y with constants c1, c2 ∈ R determined by the equations

−1
2(x− a) = φx(a) = c1 + c2a ⇒ c1 = −1

2(x− a)− c2a,
1
2(x− b) = φx(b) = c1 + c2b ⇒ c2(−a+ b) = 1

2(x− a) + 1
2(x− b).

Hence,

c2 = (x− a) + (x− b)
2(b− a) ,

c1 = −x− a2 − (x− a)a+ (x− b)a
2(b− a) = −(x− a)b+ (x− b)a

2(b− a) ,

G(x, y) = Φ(y − x)− c1 − c2y = −|y − x|2 + (x− a)(b− y) + (x− b)(a− y)
2(b− a)

=


(x−b)(a−y)

(b−a) if y ≤ x,
(x−a)(b−y)

(b−a) if y > x.

y+ +
a

+
b

+
x

y 7→ G(x, y) y 7→ G(y, y)

(b) Let f ∈ C0([a, b]) and u(x) =
∫ b

a
G(x, y)f(y) dy . Then,

u′(x) =
∫ b

a

∂G

∂x
(x, y)f(y) dy =

∫ x

a

(a− y)
(b− a) f(y) dy +

∫ b

x

(b− y)
(b− a)f(y) dy,

u′′(x) = (a− x)
(b− a) f(x)− (b− x)

(b− a)f(x) =
(
(a− x)− (b− x)

) f(x)
(b− a) = −f(x).

Since G(a, y) = 0 = G(b, y) for every y ∈ ]a, b[, there holds u(a) = 0 = u(b).
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