Part I. Multiple choice questions

- **4.1.** For what values of p is $u: [-1, 1[\rightarrow \mathbb{R} \text{ given by } u(x) = |x| \text{ in } W^{1,p}(]-1, 1[)?$
- (a) only for p = 1.
- (b) only for p = 1 and p = 2.
- (c) for all $p \in [1, \infty[$ but not for $p = \infty$.
- \checkmark (d) for all $p \in [1, \infty]$.
 - (e) None of the above.

Being bounded, $u:]-1, 1[\to \mathbb{R}$ is in $L^p(]-1, 1[)$ for any $1 \le p \le \infty$. Its weak derivative $u'(x) = \operatorname{sign}(x)$ is also bounded and hence in $L^p(]-1, 1[)$ for any $1 \le p \le \infty$.

- **4.2.** For what values of p is $u: \mathbb{R} \to \mathbb{R}$ given by u(x) = |x| in $W^{1,p}(\mathbb{R})$?
- (a) only for p = 1.
- (b) only for p = 1 and p = 2.
- (c) for all $p \in [1, \infty[$ but not for $p = \infty$.
- (d) for all $p \in [1, \infty]$.
- $\sqrt{}$ (e) None of the above.

For any $p \ge 1$, the integral $\int_{\mathbb{R}} |x|^p dx$ is infinite.

4.3. Let $n \in \mathbb{N}$ and $B_{\frac{1}{2}} = \{x \in \mathbb{R}^n : |x| < \frac{1}{2}\}$. Given $\alpha \in \mathbb{R}$, let $u_{\alpha}(x) = \left|\log|x|\right|^{\alpha}$. What is the set A_n of all $\alpha \in \mathbb{R}$ depending on n such that $u_{\alpha} \in W^{1,2}(B_{\frac{1}{2}})$?

$$\checkmark$$
 (a) $A_1 = \{0\}, A_2 =]-\infty, \frac{1}{2}[, A_n = \mathbb{R} \text{ if } n \ge 3.$

- (b) $A_1 = \mathbb{R}, A_2 =]-\infty, \frac{1}{2}[, A_n = \{0\} \text{ if } n \ge 3.$
- (c) $A_n = \left] -\infty, \frac{n}{2} \right[$ for any $n \in \mathbb{N}$.
- (d) $A_n =]-\infty, 0]$ for any $n \in \mathbb{N}$.
- (e) $A_n = \{0\}$ for any $n \in \mathbb{N}$.

In polar coordinates $(r, \theta) \in \left]0, \frac{1}{2}\right[\times \mathbb{S}^{n-1}$, we have with $s = \log r$

$$\int_{B_{\frac{1}{2}}} |u_{\alpha}|^2 \, dx = |\mathbb{S}^{n-1}| \int_0^{\frac{1}{2}} |\log r|^{2\alpha} r^{n-1} dr = |\mathbb{S}^{n-1}| \int_{-\infty}^{\log \frac{1}{2}} |s|^{2\alpha} e^{ns} \, ds,$$
$$\int_{B_{\frac{1}{2}}} |\nabla u_{\alpha}|^2 \, dx = |\mathbb{S}^{n-1}| \int_0^{\frac{1}{2}} \alpha^2 |\log r|^{2\alpha-2} r^{n-3} dr = |\mathbb{S}^{n-1}| \int_{-\infty}^{\log \frac{1}{2}} \alpha^2 |s|^{2\alpha-2} e^{(n-2)s} \, ds$$

which shows $u_{\alpha} \in L^2(B_{\frac{1}{2}})$ for any $\alpha \in \mathbb{R}$. If $n \geq 3$, then the second integral also converges for any $\alpha \in \mathbb{R}$. If n = 2, then the second integral converges, if $2\alpha - 2 < -1$, that is for $\alpha < \frac{1}{2}$. If n = 1, the second integral converges only for $\alpha = 0$.

4.4. Let $n \in \mathbb{N}$ and $B_{\frac{1}{2}} = \{x \in \mathbb{R}^n : |x| < \frac{1}{2}\}$. Given $\alpha \in \mathbb{R}$, let $u_{\alpha}(x) = \left|\log|x|\right|^{\alpha}$. What is the set B_n of all $\alpha \in \mathbb{R}$ depending on n such that $u_{\alpha} \in W^{1,\infty}(B_{\frac{1}{2}})$?

- (a) $B_1 = \{0\}, \quad B_2 =]-\infty, \frac{1}{2}[, \quad B_n = \mathbb{R} \text{ if } n \ge 3.$
- (b) $B_1 = \mathbb{R}, \quad B_2 =]-\infty, \frac{1}{2}[, \quad B_n = \{0\} \text{ if } n \ge 3.$
- (c) $B_n = \left] -\infty, \frac{n}{2} \right[$ for any $n \in \mathbb{N}$.
- (d) $B_n =]-\infty, 0]$ for any $n \in \mathbb{N}$.
- $\sqrt{(e)}$ $B_n = \{0\}$ for any $n \in \mathbb{N}$.

The function u_{α} is bounded if and only if $\alpha \leq 0$. Its gradient $|\nabla u_{\alpha}(x)| = \frac{|\alpha|}{|x|} |\log |x||^{\alpha-1}$ is bounded only for $\alpha = 0$.

- **4.5.** Let $f(x_1, x_2) = x_1 \sin(\frac{1}{x_1}) + x_2 \sin(\frac{1}{x_2})$. Which of the following is true?
- (a) $\frac{\partial f}{\partial x_1} \in L^1_{\text{loc}}(\mathbb{R}^2)$ exists as weak derivative.
- (b) $\frac{\partial f}{\partial x_2} \in L^1_{\text{loc}}(\mathbb{R}^2)$ exists as weak derivative.
- \checkmark (c) $\frac{\partial^2 f}{\partial x_1 \partial x_2} \in L^1_{\text{loc}}(\mathbb{R}^2)$ exists as weak derivative.
 - (d) All of the above.
 - (e) None of the above.

Suppose $\frac{\partial f}{\partial x_1} \in L^1_{\text{loc}}(\mathbb{R}^2)$ exists as weak derivative. Let $\{K_n\}_{n\in\mathbb{N}}$ be a countable collection of compact subsets $K_n = I_n \times J_n \subset \mathbb{R}^2$, where $I_n, J_n := [-n, n] \subset \mathbb{R}$ are compact intervals, such that $\mathbb{R}^2 = \bigcup_{n\in\mathbb{N}} K_n$. Since $\frac{\partial f}{\partial x_1} \in L^1(K_n)$ for any n by assumption, Fubini's theorem implies that $g: x_1 \mapsto \frac{\partial f}{\partial x_1}(x_1, x_2)$ is in $L^1(I_n)$ for almost every $x_2 \in J_n$. Since any compact subset of \mathbb{R} is covered by finitely many intervals in $\{I_n\}_{n\in\mathbb{N}}$, we conclude that $g: x_1 \mapsto \frac{\partial f}{\partial x_1}(x_1, x_2)$ is in $L^1_{\text{loc}}(\mathbb{R})$ for almost every $x_2 \in \mathbb{R}$.

Let us write $f(x_1, x_2) = v(x_1) + w(x_2)$, where $v(t) := t \sin \frac{1}{t} =: w(t)$. Let $\phi, \psi \in C_c^{\infty}(\mathbb{R})$ be arbitrary and $\varphi(x_1, x_2) = \phi(x_1)\psi(x_2)$. Since $\varphi \in C_c^{\infty}(\mathbb{R}^2)$, the definition of weak derivative and Fubini's theorem imply

$$0 = \int_{\mathbb{R}^2} \frac{\partial f}{\partial x_1} \varphi + f \frac{\partial \varphi}{\partial x_1} \, dx = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} \frac{\partial f}{\partial x_1} \phi + f \phi' \, dx_1 \right) \psi \, dx_2$$

Since $\psi \in C_c^{\infty}(\mathbb{R})$ is arbitrary, Satz 3.4.3 (variational Lemma) applies and yields

$$\forall \phi \in C_c^{\infty}(\mathbb{R}) \quad \exists G_{\phi} \subseteq \mathbb{R} \quad \forall x_2 \in G_{\phi}: \quad 0 = \int_{\mathbb{R}} \frac{\partial f}{\partial x_1} \phi + f \phi' \, dx_1$$

and such that the Lebesgue measure of $\mathbb{R} \setminus G_{\phi}$ vanishes for any ϕ . Let $n \in \mathbb{N}$ and let $\mathcal{P}_n \subset C_c^{\infty}(]-n, n[)$ be a countable subset, which is dense in the C^1 -Topology and $G_n = \bigcap_{\phi \in \mathcal{P}_n} G_{\phi}$. Then, since \mathcal{P}_n is countable, the Lebesgue measure of $\mathbb{R} \setminus G_n$ still vanishes and we obtain

$$\exists G_n \subseteq \mathbb{R} \quad \forall \phi \in \mathcal{P}_n \quad \forall x_2 \in G_n : \quad 0 = \int_{\mathbb{R}} \frac{\partial f}{\partial x_1} \phi + f \phi' \, dx_1. \tag{(*)}$$

last update: 19 March 2021

Let $\eta \in C_c^{\infty}(]-n, n[)$ be arbitrary. By density of \mathcal{P}_n we can choose a sequence $(\phi_k)_{k\in\mathbb{N}}$ of functions $\phi_k \in \mathcal{P}_n$ such that $\|\phi_k - \eta\|_{C^1} \to 0$ as $k \to \infty$ which suffices to pass to the limit in (*). Hence, for all $x_2 \in \bigcap_{n \in \mathbb{N}} G_n$, i.e. for almost all $x_2 \in \mathbb{R}$, there holds

$$0 = \int_{\mathbb{R}} \frac{\partial f}{\partial x_1} \eta + f \eta' \, dx_1 \qquad \qquad \Rightarrow -\int_{\mathbb{R}} f \eta' \, dx_1 = \int_{\mathbb{R}} g \eta \, dx_1.$$

for any $\eta \in C_c^{\infty}(\mathbb{R})$ and we conclude that $g \in L^1_{\text{loc}}(\mathbb{R})$ is the weak derivative of $f(\cdot, x_2) \in L^1_{\text{loc}}(\mathbb{R})$ for almost every $x_2 \in \mathbb{R}$. Since the constant function $h: x_1 \mapsto w(x_2)$ also has a weak derivative, namely $0 \in L^1_{\text{loc}}(\mathbb{R})$, we conclude by linearity that $v = f(\cdot, x_2) - h \in L^1_{\text{loc}}(\mathbb{R})$ has the weak derivative $g - 0 = g \in L^1_{\text{loc}}(\mathbb{R})$. Hence $v \in W^{1,1}_{\text{loc}}(\mathbb{R})$. This however contradicts the following Lemma.

Lemma. The continuous function $v: [-1, 1] \to \mathbb{R}$ given by $v(t) = t \sin \frac{1}{t}$ for $t \neq 0$ and v(0) = 0 is not absolutely continuous.

Proof. For each $k \in \mathbb{N}$ let $t_k = \frac{2}{k\pi} \in \mathbb{R}$. Then, $t_k > t_{k+1}$ for any $k \in \mathbb{N}$ and for any $m, n \in \mathbb{N}$ with m > n there holds

$$\sum_{k=n}^{m-1} (t_k - t_{k+1}) = t_n - t_m < \frac{2}{n\pi}.$$

However,

$$\left|\frac{1}{k}\sin\frac{k\pi}{2} - \frac{1}{(k+1)}\sin\frac{(k+1)\pi}{2}\right| = \begin{cases} \frac{1}{k} & \text{if } k \text{ is odd,} \\ \frac{1}{k+1} & \text{if } k \text{ is even,} \end{cases}$$
$$\sum_{k=n}^{m-1} \left|v(t_k) - v(t_{k+1})\right| = \frac{2}{\pi} \sum_{k=n}^{m-1} \left|\frac{1}{k}\sin\frac{k\pi}{2} - \frac{1}{(k+1)}\sin\frac{(k+1)\pi}{2}\right| \ge \frac{2}{\pi} \sum_{k=n}^{m-1} \frac{1}{k+1}.$$

Let $\delta > 0$ be arbitrary. According to the estimates above, we can choose $n, m \in \mathbb{N}$, such that both,

$$\sum_{k=n}^{m-1} (t_k - t_{k+1}) < \delta \qquad \text{and} \qquad \sum_{k=n}^{m-1} |v(t_k) - v(t_{k+1})| \ge 1,$$

which proves that $v(t) = t \sin \frac{1}{t}$ is not absolutely continuous in [-1, 1].

The argument for non-existence of $\frac{\partial f}{\partial x_2}$ in $L^1_{\text{loc}}(\mathbb{R}^2)$ is identical. Thus, f does not have weak first derivatives. However, for any $\varphi \in C_c^{\infty}(\mathbb{R}^2)$,

which implies that $\frac{\partial^2 f}{\partial x_1 \partial x_2} = 0 \in L^1_{\text{loc}}(\mathbb{R}^2)$ exists as weak derivative.

last update: 19 March 2021

4/8

Part II. True or false?

4.6. Let $\mathbb{R}_+ = [0, \infty[\subset \mathbb{R}]$. Any $u \in W^{1,2}(\mathbb{R}_+)$ has a bounded representative.

 $\sqrt{}$ (a) True.

(b) False.

By Sobolev's embedding theorem, $\forall u \in W^{1,2}(\mathbb{R}_+) : \|u\|_{L^{\infty}(\mathbb{R}_+)} \leq C \|u\|_{W^{1,2}(\mathbb{R}_+)}$

4.7. The weak derivative of any $u \in W^{1,2}(\mathbb{R}_+)$ has a bounded representative.

- (a) True.
- $\sqrt{}$ (b) False.

Functions $u \in W^{1,2}(\mathbb{R}_+)$ have weak derivatives $u \in L^2(\mathbb{R}_+)$ which could be unbounded. For example, $u(x) = x^{\frac{3}{4}}e^{-x}$ with $u'(x) = e^{-x}(\frac{3}{4}x^{-\frac{1}{4}} - x^{\frac{3}{4}})$ satisfies

$$||u||_{L^{2}(\mathbb{R}_{+})} < \infty,$$

$$||u'||_{L^{2}(\mathbb{R}_{+})} \le \frac{3}{4} \left(\int_{0}^{\infty} x^{-\frac{1}{2}} e^{-2x} \, dx \right)^{\frac{1}{2}} + ||u||_{L^{2}(\mathbb{R}_{+})} < \infty,$$

hence $u \in W^{1,2}(\mathbb{R}_+)$ but $u'(x) \to \infty$ for $x \to 0$.

4.8. Let I := [a, b] for $-\infty < a < b < \infty$. Then the boundary-value problem

$$\begin{cases} -u'' + u' = f & \text{in } I, \\ u'(a) = 0 = u'(b) \end{cases}$$

has at least one weak solution $u \in H^1(I)$ for every $f \in C^0(\overline{I})$.

(a)True.

 $\sqrt{}$ (b) False.

Suppose, $u \in H^1(I)$ is a weak solution to the given Neumann problem, i.e.

$$\forall v \in H^1(I): \quad \int_I u'v' + u'v \, dx = \int_I fv \, dx.$$

In particular, u' has the weak derivative $(u' - f) \in L^2(I)$ which implies $u' \in H^1(I)$. But then, $(u')' = (u' - f) \in C^0(\overline{I})$. Hence $u' \in C^1(\overline{I})$ and $u \in C^2(\overline{I})$. So any weak solution is a classical solution. In particular, $w(x) = u'(x)e^{-x}$ satisfies w(a) = 0 and

$$-w'(x) = -u''(x)e^{-x} + u'(x)e^{-x} = f(x)e^{-x}$$

$$\Rightarrow w(x) = w(a) - \int_a^x f(t)e^{-t} dt = -\int_a^x f(t)e^{-t} dt$$

$$\Rightarrow u'(x) = -e^x \int_a^x f(t)e^{-t} dt,$$

However, not every $f \in C^0(\overline{I})$ allows u' to satisfy the second boundary condition

$$0 = u'(b) = -e^b \int_a^b f(t)e^{-t} dt.$$

4.9. Let I := [a, b] for $-\infty < a < b < \infty$. Then the boundary-value problem

$$\begin{cases} -u'' + u' = f & \text{in } I, \\ u'(a) = 0 = u'(b) \end{cases}$$

has at most one weak solution $u \in H^1(I)$ for every $f \in C^0(\overline{I})$.

(a)True.

 $\sqrt{(b)}$ False.

Let f = 0. Then every constant function solves the given boundary-value problem.

4.10. Let $n \in \mathbb{N}$ and $B_{\frac{1}{2}} = \{x \in \mathbb{R}^n : |x| < \frac{1}{2}\}$. Given $\alpha \in \mathbb{R}$, let $u_{\alpha}(x) = \left|\log|x|\right|^{\alpha}$. If α is chosen such that $u_{\alpha} \in W^{1,2}(B_{\frac{1}{2}})$, then u_{α} has a representative in $C^0(\overline{B_{\frac{1}{2}}})$.

(a) True.

 $\sqrt{}$ (b) False.

If $n \geq 3$, we may choose any $\alpha > 0$ for which $u_{\alpha} \in W^{1,2}(B_{\frac{1}{2}})$ is unbounded.

4.11. Let n = 1 and $B_{\frac{1}{2}} = \{x \in \mathbb{R} : |x| < \frac{1}{2}\}$. Given $\alpha \in \mathbb{R}$, let $u_{\alpha}(x) = \left|\log|x|\right|^{\alpha}$. If α is chosen such that $u_{\alpha} \in W^{1,2}(B_{\frac{1}{2}})$, then u_{α} has a representative in $C^{1}(\overline{B_{\frac{1}{2}}})$.

 $\sqrt{}$ (a) True.

(b) False.

According to question 4.3, $\alpha = 0$ is the only choice.

4.12. Let I = [-1, 1[and let $u, v \colon I \to \mathbb{R}$ be given by u(x) = |x| and $v(x) = (1 - x^2)^{\frac{3}{4}}$. Then $uv \in W^{1,3}(I)$.

 $\sqrt{}$ (a) True.

(b) False.

The function v is differentiable classically in I with derivative $v'(x) = \frac{3}{4}(-2x)(1-x^2)^{-\frac{1}{4}}$. Moreover,

$$\int_{-1}^{1} |v'|^3 \, dx = \frac{27}{8} \int_{-1}^{1} \frac{|x|^3}{(1-x^2)^{\frac{3}{4}}} \, dx \le \frac{27}{8} \int_{0}^{1} \frac{2x}{(1-x^2)^{\frac{3}{4}}} \, dx = \frac{27}{8} \int_{0}^{1} s^{-\frac{3}{4}} \, dx < \infty.$$

Since clearly $v \in L^3(I)$, we obtain $v \in W^{1,3}(I)$. Since also $u \in W^{1,\infty}(I) \subset W^{1,3}(I)$, the statement follows from Corollary 7.3.2.

4.13. The Cantor function on [0, 1] is absolutely continuous.

- (a) True.
- $\sqrt{}$ (b) False.

If $u \in C^0([0,1])$ is absolutely continuous, then $u \in W^{1,1}(]0,1[)$. Since the Cantor function has vanishing classical derivative almost everywhere, its weak derivative would be zero which leads to a contradiction as shown on Problem Set 2.

- **4.14.** $\exists C > 0 \quad \forall u \in H^1(]0, 1[): \quad \int_0^1 |u|^2 \, dx \le C \int_0^1 |u'|^2 \, dx.$
- (a) True.
- $\sqrt{}$ (b) False.

The constant functions are in $H^1(]0, 1[)$ and do not satisfy the inequality for any C unless they vanish. (Poincaré's inequality requires $u \in H^1_0$ or $\int_I u \, dx = 0$.)

4.15. Let $0 < a < 1 < b < \infty$ such that $\int_{a}^{b} (\log x) dx = 0$. Then $\int_{a}^{b} |\log x|^{2} dx \le \frac{(b-a)^{3}}{ab}$.

(b) False.

Since $u(x) = \log x$ is smooth in]a, b[satisfying $\int_a^b u(y) \, dy = 0$, there holds

$$\begin{split} |u(x)| &= \left| \frac{1}{b-a} \int_{a}^{b} \left(u(x) - u(y) \right) dy \right| \\ &\leq \frac{1}{b-a} \int_{a}^{b} |u(x) - u(y)| \, dy = \frac{1}{b-a} \int_{a}^{b} \left| \int_{y}^{x} u'(t) \, dt \right| dy \\ &\leq \frac{1}{b-a} \int_{a}^{b} \int_{y}^{x} |u'(t)| \, dt \, dy \\ &\leq \frac{1}{b-a} \int_{a}^{b} \int_{a}^{b} |u'(t)| \, dt \, dy = \int_{a}^{b} |u'(t)| \, dt, \\ \int_{a}^{b} |u(x)|^{2} \, dx \leq \int_{a}^{b} \left(\int_{a}^{b} |u'(t)| \, dt \right)^{2} \, dx \\ &\leq \int_{a}^{b} \left((b-a) \int_{a}^{b} |u'(t)|^{2} \, dt \right) \, dx \leq (b-a)^{2} \int_{a}^{b} |u'(t)|^{2} \, dt \end{split}$$

which is the Poincaré inequality. The statement in question is true because

$$(b-a)^2 \int_a^b |u'(t)|^2 dt = (b-a)^2 \int_a^b \left|\frac{1}{t}\right|^2 dt = (b-a)^2 \left(-\frac{1}{b} + \frac{1}{a}\right) = \frac{(b-a)^3}{ab}.$$

last update: 19 March 2021