Part I. Multiple choice questions

4.1. For what values of p is $u:]-1,1\left[\rightarrow \mathbb{R}\right.$ given by $u(x)=|x|$ in $W^{1, p}(]-1,1[)$?
(a) only for $p=1$.
(b) only for $p=1$ and $p=2$.
(c) for all $p \in[1, \infty[$ but not for $p=\infty$.
(d) for all $p \in[1, \infty]$.
(e) None of the above.

Being bounded, $u:]-1,1\left[\rightarrow \mathbb{R}\right.$ is in $L^{p}(]-1,1[)$ for any $1 \leq p \leq \infty$. Its weak derivative $u^{\prime}(x)=\operatorname{sign}(x)$ is also bounded and hence in $L^{p}(]-1,1[)$ for any $1 \leq p \leq \infty$.
4.2. For what values of p is $u: \mathbb{R} \rightarrow \mathbb{R}$ given by $u(x)=|x|$ in $W^{1, p}(\mathbb{R})$?
(a) only for $p=1$.
(b) only for $p=1$ and $p=2$.
(c) for all $p \in[1, \infty[$ but not for $p=\infty$.
(d) for all $p \in[1, \infty]$.
$\sqrt{ }(e)$ None of the above.
For any $p \geq 1$, the integral $\int_{\mathbb{R}}|x|^{p} d x$ is infinite.
4.3. Let $n \in \mathbb{N}$ and $B_{\frac{1}{2}}=\left\{x \in \mathbb{R}^{n}:|x|<\frac{1}{2}\right\}$. Given $\alpha \in \mathbb{R}$, let $u_{\alpha}(x)=|\log | x| |^{\alpha}$. What is the set A_{n} of all $\alpha \in \mathbb{R}$ depending on n such that $u_{\alpha} \in W^{1,2}\left(B_{\frac{1}{2}}\right)$?
$\sqrt{ } \quad$ (a) $\left.A_{1}=\{0\}, \quad A_{2}=\right]-\infty, \frac{1}{2}\left[, \quad A_{n}=\mathbb{R}\right.$ if $n \geq 3$.
(b) $\left.\quad A_{1}=\mathbb{R}, \quad A_{2}=\right]-\infty, \frac{1}{2}\left[, \quad A_{n}=\{0\}\right.$ if $n \geq 3$.
(c) $\left.\quad A_{n}=\right]-\infty, \frac{n}{2}[$ for any $n \in \mathbb{N}$.
(d) $\left.\left.A_{n}=\right]-\infty, 0\right]$ for any $n \in \mathbb{N}$.
(e) $A_{n}=\{0\}$ for any $n \in \mathbb{N}$.

In polar coordinates $(r, \theta) \in] 0, \frac{1}{2}\left[\times \mathbb{S}^{n-1}\right.$, we have with $s=\log r$

$$
\begin{aligned}
& \int_{B_{\frac{1}{2}}}\left|u_{\alpha}\right|^{2} d x=\left|\mathbb{S}^{n-1}\right| \int_{0}^{\frac{1}{2}}|\log r|^{2 \alpha} r^{n-1} d r=\left|\mathbb{S}^{n-1}\right| \int_{-\infty}^{\log \frac{1}{2}}|s|^{2 \alpha} e^{n s} d s, \\
& \int_{B_{\frac{1}{2}}}\left|\nabla u_{\alpha}\right|^{2} d x=\left|\mathbb{S}^{n-1}\right| \int_{0}^{\frac{1}{2}} \alpha^{2}|\log r|^{2 \alpha-2} r^{n-3} d r=\left|\mathbb{S}^{n-1}\right| \int_{-\infty}^{\log \frac{1}{2}} \alpha^{2}|s|^{2 \alpha-2} e^{(n-2) s} d s
\end{aligned}
$$

which shows $u_{\alpha} \in L^{2}\left(B_{\frac{1}{2}}\right)$ for any $\alpha \in \mathbb{R}$. If $n \geq 3$, then the second integral also converges for any $\alpha \in \mathbb{R}$. If $n=2^{2}$, then the second integral converges, if $2 \alpha-2<-1$, that is for $\alpha<\frac{1}{2}$. If $n=1$, the second integral converges only for $\alpha=0$.
4.4. Let $n \in \mathbb{N}$ and $B_{\frac{1}{2}}=\left\{x \in \mathbb{R}^{n}:|x|<\frac{1}{2}\right\}$. Given $\alpha \in \mathbb{R}$, let $u_{\alpha}(x)=|\log | x| |^{\alpha}$. What is the set B_{n} of all $\alpha \in \mathbb{R}$ depending on n such that $u_{\alpha} \in W^{1, \infty}\left(B_{\frac{1}{2}}\right)$?
(a) $\left.B_{1}=\{0\}, \quad B_{2}=\right]-\infty, \frac{1}{2}\left[, \quad B_{n}=\mathbb{R}\right.$ if $n \geq 3$.
(b) $\left.\quad B_{1}=\mathbb{R}, \quad B_{2}=\right]-\infty, \frac{1}{2}\left[, \quad B_{n}=\{0\}\right.$ if $n \geq 3$.
(c) $\left.B_{n}=\right]-\infty, \frac{n}{2}[$ for any $n \in \mathbb{N}$.
(d) $\left.\left.B_{n}=\right]-\infty, 0\right]$ for any $n \in \mathbb{N}$.
(e) $B_{n}=\{0\}$ for any $n \in \mathbb{N}$.

The function u_{α} is bounded if and only if $\alpha \leq 0$. Its gradient $\left|\nabla u_{\alpha}(x)\right|=\frac{|\alpha|}{|x|}|\log | x| |^{\alpha-1}$ is bounded only for $\alpha=0$.
4.5. Let $f\left(x_{1}, x_{2}\right)=x_{1} \sin \left(\frac{1}{x_{1}}\right)+x_{2} \sin \left(\frac{1}{x_{2}}\right)$. Which of the following is true?
(a) $\frac{\partial f}{\partial x_{1}} \in L_{\text {loc }}^{1}\left(\mathbb{R}^{2}\right)$ exists as weak derivative.
(b) $\frac{\partial f}{\partial x_{2}} \in L_{\text {loc }}^{1}\left(\mathbb{R}^{2}\right)$ exists as weak derivative.
$\sqrt{ }$ (c) $\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} \in L_{\text {loc }}^{1}\left(\mathbb{R}^{2}\right)$ exists as weak derivative.
(d) All of the above.
(e) None of the above.

Suppose $\frac{\partial f}{\partial x_{1}} \in L_{\text {loc }}^{1}\left(\mathbb{R}^{2}\right)$ exists as weak derivative. Let $\left\{K_{n}\right\}_{n \in \mathbb{N}}$ be a countable collection of compact subsets $K_{n}=I_{n} \times J_{n} \subset \mathbb{R}^{2}$, where $I_{n}, J_{n}:=[-n, n] \subset \mathbb{R}$ are compact intervals, such that $\mathbb{R}^{2}=\bigcup_{n \in \mathbb{N}} K_{n}$. Since $\frac{\partial f}{\partial x_{1}} \in L^{1}\left(K_{n}\right)$ for any n by assumption, Fubini's theorem implies that $g: x_{1} \mapsto \frac{\partial f}{\partial x_{1}}\left(x_{1}, x_{2}\right)$ is in $L^{1}\left(I_{n}\right)$ for almost every $x_{2} \in J_{n}$. Since any compact subset of \mathbb{R} is covered by finitely many intervals in $\left\{I_{n}\right\}_{n \in \mathbb{N}}$, we conclude that $g: x_{1} \mapsto \frac{\partial f}{\partial x_{1}}\left(x_{1}, x_{2}\right)$ is in $L_{\mathrm{loc}}^{1}(\mathbb{R})$ for almost every $x_{2} \in \mathbb{R}$.
Let us write $f\left(x_{1}, x_{2}\right)=v\left(x_{1}\right)+w\left(x_{2}\right)$, where $v(t):=t \sin \frac{1}{t}=: w(t)$. Let $\phi, \psi \in C_{c}^{\infty}(\mathbb{R})$ be arbitrary and $\varphi\left(x_{1}, x_{2}\right)=\phi\left(x_{1}\right) \psi\left(x_{2}\right)$. Since $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right)$, the definition of weak derivative and Fubini's theorem imply

$$
0=\int_{\mathbb{R}^{2}} \frac{\partial f}{\partial x_{1}} \varphi+f \frac{\partial \varphi}{\partial x_{1}} d x=\int_{\mathbb{R}}\left(\int_{\mathbb{R}} \frac{\partial f}{\partial x_{1}} \phi+f \phi^{\prime} d x_{1}\right) \psi d x_{2}
$$

Since $\psi \in C_{c}^{\infty}(\mathbb{R})$ is arbitrary, Satz 3.4.3 (variational Lemma) applies and yields

$$
\forall \phi \in C_{c}^{\infty}(\mathbb{R}) \quad \exists G_{\phi} \subseteq \mathbb{R} \quad \forall x_{2} \in G_{\phi}: \quad 0=\int_{\mathbb{R}} \frac{\partial f}{\partial x_{1}} \phi+f \phi^{\prime} d x_{1}
$$

and such that the Lebesgue measure of $\mathbb{R} \backslash G_{\phi}$ vanishes for any ϕ. Let $n \in \mathbb{N}$ and let $\mathcal{P}_{n} \subset C_{c}^{\infty}(]-n, n[)$ be a countable subset, which is dense in the C^{1}-Topology and $G_{n}=\bigcap_{\phi \in \mathcal{P}_{n}} G_{\phi}$. Then, since \mathcal{P}_{n} is countable, the Lebesgue measure of $\mathbb{R} \backslash G_{n}$ still vanishes and we obtain

$$
\begin{equation*}
\exists G_{n} \subseteq \mathbb{R} \quad \forall \phi \in \mathcal{P}_{n} \quad \forall x_{2} \in G_{n}: \quad 0=\int_{\mathbb{R}} \frac{\partial f}{\partial x_{1}} \phi+f \phi^{\prime} d x_{1} . \tag{*}
\end{equation*}
$$

Let $\eta \in C_{c}^{\infty}(]-n, n[)$ be arbitrary. By density of \mathcal{P}_{n} we can choose a sequence $\left(\phi_{k}\right)_{k \in \mathbb{N}}$ of functions $\phi_{k} \in \mathcal{P}_{n}$ such that $\left\|\phi_{k}-\eta\right\|_{C^{1}} \rightarrow 0$ as $k \rightarrow \infty$ which suffices to pass to the limit in $(*)$. Hence, for all $x_{2} \in \bigcap_{n \in \mathbb{N}} G_{n}$, i. e. for almost all $x_{2} \in \mathbb{R}$, there holds

$$
0=\int_{\mathbb{R}} \frac{\partial f}{\partial x_{1}} \eta+f \eta^{\prime} d x_{1} \quad \Rightarrow-\int_{\mathbb{R}} f \eta^{\prime} d x_{1}=\int_{\mathbb{R}} g \eta d x_{1} .
$$

for any $\eta \in C_{c}^{\infty}(\mathbb{R})$ and we conclude that $g \in L_{\text {loc }}^{1}(\mathbb{R})$ is the weak derivative of $f\left(\cdot, x_{2}\right) \in$ $L_{\mathrm{loc}}^{1}(\mathbb{R})$ for almost every $x_{2} \in \mathbb{R}$. Since the constant function $h: x_{1} \mapsto w\left(x_{2}\right)$ also has a weak derivative, namely $0 \in L_{\text {loc }}^{1}(\mathbb{R})$, we conclude by linearity that $v=f\left(\cdot, x_{2}\right)-h \in$ $L_{\text {loc }}^{1}(\mathbb{R})$ has the weak derivative $g-0=g \in L_{\text {loc }}^{1}(\mathbb{R})$. Hence $v \in W_{\text {loc }}^{1,1}(\mathbb{R})$. This however contradicts the following Lemma.

Lemma. The continuous function $v:[-1,1] \rightarrow \mathbb{R}$ given by $v(t)=t \sin \frac{1}{t}$ for $t \neq 0$ and $v(0)=0$ is not absolutely continuous.

Proof. For each $k \in \mathbb{N}$ let $t_{k}=\frac{2}{k \pi} \in \mathbb{R}$. Then, $t_{k}>t_{k+1}$ for any $k \in \mathbb{N}$ and for any $m, n \in \mathbb{N}$ with $m>n$ there holds

$$
\sum_{k=n}^{m-1}\left(t_{k}-t_{k+1}\right)=t_{n}-t_{m}<\frac{2}{n \pi} .
$$

However,

$$
\begin{aligned}
\left|\frac{1}{k} \sin \frac{k \pi}{2}-\frac{1}{(k+1)} \sin \frac{(k+1) \pi}{2}\right| & = \begin{cases}\frac{1}{k} & \text { if } k \text { is odd, } \\
\frac{1}{k+1} & \text { if } k \text { is even, }\end{cases} \\
\sum_{k=n}^{m-1}\left|v\left(t_{k}\right)-v\left(t_{k+1}\right)\right| & =\frac{2}{\pi} \sum_{k=n}^{m-1}\left|\frac{1}{k} \sin \frac{k \pi}{2}-\frac{1}{(k+1)} \sin \frac{(k+1) \pi}{2}\right| \geq \frac{2}{\pi} \sum_{k=n}^{m-1} \frac{1}{k+1} .
\end{aligned}
$$

Let $\delta>0$ be arbitrary. According to the estimates above, we can choose $n, m \in \mathbb{N}$, such that both,

$$
\sum_{k=n}^{m-1}\left(t_{k}-t_{k+1}\right)<\delta \quad \text { and } \quad \sum_{k=n}^{m-1}\left|v\left(t_{k}\right)-v\left(t_{k+1}\right)\right| \geq 1
$$

which proves that $v(t)=t \sin \frac{1}{t}$ is not absolutely continuous in $[-1,1]$.
The argument for non-existence of $\frac{\partial f}{\partial x_{2}}$ in $L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{2}\right)$ is identical. Thus, f does not have weak first derivatives. However, for any $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right)$,

$$
\int_{\mathbb{R}^{2}} f \frac{\partial^{2} \varphi}{\partial x_{1} \partial x_{2}} d x=\int_{\mathbb{R}} v\left(x_{1}\right)(\underbrace{\int_{\mathbb{R}} \frac{\partial^{2} \varphi}{\partial x_{1} \partial x_{2}} d x_{2}}_{0}) d x_{1}+\int_{\mathbb{R}} w\left(x_{2}\right)(\underbrace{\int_{\mathbb{R}} \frac{\partial^{2} \varphi}{\partial x_{1} \partial x_{2}} d x_{1}}_{0}) d x_{2}
$$

which implies that $\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}=0 \in L_{\text {loc }}^{1}\left(\mathbb{R}^{2}\right)$ exists as weak derivative.

Part II. True or false?

4.6. Let $\left.\mathbb{R}_{+}=\right] 0, \infty\left[\subset \mathbb{R}\right.$. Any $u \in W^{1,2}\left(\mathbb{R}_{+}\right)$has a bounded representative.
$\sqrt{ }$ (a) True.
(b) False.

By Sobolev's embedding theorem, $\forall u \in W^{1,2}\left(\mathbb{R}_{+}\right):\|u\|_{L^{\infty}\left(\mathbb{R}_{+}\right)} \leq C\|u\|_{W^{1,2}\left(\mathbb{R}_{+}\right)}$
4.7. The weak derivative of any $u \in W^{1,2}\left(\mathbb{R}_{+}\right)$has a bounded representative.
(a) True.
(b) False.

Functions $u \in W^{1,2}\left(\mathbb{R}_{+}\right)$have weak derivatives $u \in L^{2}\left(\mathbb{R}_{+}\right)$which could be unbounded. For example, $u(x)=x^{\frac{3}{4}} e^{-x}$ with $u^{\prime}(x)=e^{-x}\left(\frac{3}{4} x^{-\frac{1}{4}}-x^{\frac{3}{4}}\right)$ satisfies

$$
\begin{aligned}
\|u\|_{L^{2}\left(\mathbb{R}_{+}\right)} & <\infty \\
\left\|u^{\prime}\right\|_{L^{2}\left(\mathbb{R}_{+}\right)} & \leq \frac{3}{4}\left(\int_{0}^{\infty} x^{-\frac{1}{2}} e^{-2 x} d x\right)^{\frac{1}{2}}+\|u\|_{L^{2}\left(\mathbb{R}_{+}\right)}<\infty
\end{aligned}
$$

hence $u \in W^{1,2}\left(\mathbb{R}_{+}\right)$but $u^{\prime}(x) \rightarrow \infty$ for $x \rightarrow 0$.
4.8. Let $I:=] a, b[$ for $-\infty<a<b<\infty$. Then the boundary-value problem

$$
\left\{\begin{aligned}
-u^{\prime \prime}+u^{\prime}=f \quad \text { in } I, \\
u^{\prime}(a)=0=u^{\prime}(b)
\end{aligned}\right.
$$

has at least one weak solution $u \in H^{1}(I)$ for every $f \in C^{0}(\bar{I})$.
(a) True.
$\sqrt{ }$ (b) False.
Suppose, $u \in H^{1}(I)$ is a weak solution to the given Neumann problem, i. e.

$$
\forall v \in H^{1}(I): \quad \int_{I} u^{\prime} v^{\prime}+u^{\prime} v d x=\int_{I} f v d x
$$

In particular, u^{\prime} has the weak derivative $\left(u^{\prime}-f\right) \in L^{2}(I)$ which implies $u^{\prime} \in H^{1}(I)$. But then, $\left(u^{\prime}\right)^{\prime}=\left(u^{\prime}-f\right) \in C^{0}(\bar{I})$. Hence $u^{\prime} \in C^{1}(\bar{I})$ and $u \in C^{2}(\bar{I})$. So any weak solution is a classical solution. In particular, $w(x)=u^{\prime}(x) e^{-x}$ satisfies $w(a)=0$ and

$$
\begin{aligned}
-w^{\prime}(x) & =-u^{\prime \prime}(x) e^{-x}+u^{\prime}(x) e^{-x}=f(x) e^{-x} \\
\Rightarrow w(x) & =w(a)-\int_{a}^{x} f(t) e^{-t} d t=-\int_{a}^{x} f(t) e^{-t} d t \\
\Rightarrow u^{\prime}(x) & =-e^{x} \int_{a}^{x} f(t) e^{-t} d t,
\end{aligned}
$$

However, not every $f \in C^{0}(\bar{I})$ allows u^{\prime} to satisfy the second boundary condition

$$
0=u^{\prime}(b)=-e^{b} \int_{a}^{b} f(t) e^{-t} d t
$$

4.9. Let $I:=] a, b[$ for $-\infty<a<b<\infty$. Then the boundary-value problem

$$
\left\{\begin{array}{rr}
-u^{\prime \prime}+u^{\prime}=f & \text { in } I, \\
u^{\prime}(a)=0= & u^{\prime}(b)
\end{array}\right.
$$

has at most one weak solution $u \in H^{1}(I)$ for every $f \in C^{0}(\bar{I})$.
(a) True.
$\sqrt{ }$ (b) False.
Let $f=0$. Then every constant function solves the given boundary-value problem.
4.10. Let $n \in \mathbb{N}$ and $B_{\frac{1}{2}}=\left\{x \in \mathbb{R}^{n}:|x|<\frac{1}{2}\right\}$. Given $\alpha \in \mathbb{R}$, let $u_{\alpha}(x)=|\log | x| |^{\alpha}$. If α is chosen such that $u_{\alpha} \in W^{1,2}\left(B_{\frac{1}{2}}\right)$, then u_{α} has a representative in $C^{0}\left(\overline{B_{\frac{1}{2}}}\right)$.
(a) True.
$\sqrt{ }$ (b) False.
If $n \geq 3$, we may choose any $\alpha>0$ for which $u_{\alpha} \in W^{1,2}\left(B_{\frac{1}{2}}\right)$ is unbounded.
4.11. Let $n=1$ and $B_{\frac{1}{2}}=\left\{x \in \mathbb{R}:|x|<\frac{1}{2}\right\}$. Given $\alpha \in \mathbb{R}$, let $u_{\alpha}(x)=|\log | x| |^{\alpha}$. If α is chosen such that $u_{\alpha} \in W^{1,2}\left(B_{\frac{1}{2}}\right)$, then u_{α} has a representative in $C^{1}\left(\overline{B_{\frac{1}{2}}}\right)$.
$\sqrt{ }$ (a) True.
(b) False.

According to question $4.3, \alpha=0$ is the only choice.
4.12. Let $I=]-1,1\left[\right.$ and let $u, v: I \rightarrow \mathbb{R}$ be given by $u(x)=|x|$ and $v(x)=\left(1-x^{2}\right)^{\frac{3}{4}}$. Then $u v \in W^{1,3}(I)$.
$\sqrt{ }$ (a) True.
(b) False.

The function v is differentiable classically in I with derivative $v^{\prime}(x)=\frac{3}{4}(-2 x)\left(1-x^{2}\right)^{-\frac{1}{4}}$. Moreover,

$$
\int_{-1}^{1}\left|v^{\prime}\right|^{3} d x=\frac{27}{8} \int_{-1}^{1} \frac{|x|^{3}}{\left(1-x^{2}\right)^{\frac{3}{4}}} d x \leq \frac{27}{8} \int_{0}^{1} \frac{2 x}{\left(1-x^{2}\right)^{\frac{3}{4}}} d x=\frac{27}{8} \int_{0}^{1} s^{-\frac{3}{4}} d x<\infty .
$$

Since clearly $v \in L^{3}(I)$, we obtain $v \in W^{1,3}(I)$. Since also $u \in W^{1, \infty}(I) \subset W^{1,3}(I)$, the statement follows from Corollary 7.3.2.
4.13. The Cantor function on $[0,1]$ is absolutely continuous.
(a) True.
$\sqrt{ }$ (b) False.
If $u \in C^{0}([0,1])$ is absolutely continuous, then $u \in W^{1,1}(] 0,1[)$. Since the Cantor function has vanishing classical derivative almost everywhere, its weak derivative would be zero which leads to a contradiction as shown on Problem Set 2.
4.14. $\exists C>0 \quad \forall u \in H^{1}(] 0,1[): \quad \int_{0}^{1}|u|^{2} d x \leq C \int_{0}^{1}\left|u^{\prime}\right|^{2} d x$.
(a) True.
$\sqrt{ }$ (b) False.
The constant functions are in $H^{1}(] 0,1[)$ and do not satisfy the inequality for any C unless they vanish. (Poincaré's inequality requires $u \in H_{0}^{1}$ or $\int_{I} u d x=0$.)
4.15. Let $0<a<1<b<\infty$ such that $\int_{a}^{b}(\log x) d x=0$. Then $\int_{a}^{b}|\log x|^{2} d x \leq \frac{(b-a)^{3}}{a b}$.
$\sqrt{ }$ (a) True.
(b) False.

Since $u(x)=\log x$ is smooth in $] a, b\left[\right.$ satisfying $\int_{a}^{b} u(y) d y=0$, there holds

$$
\begin{aligned}
|u(x)| & =\left|\frac{1}{b-a} \int_{a}^{b}(u(x)-u(y)) d y\right| \\
& \leq \frac{1}{b-a} \int_{a}^{b}|u(x)-u(y)| d y=\frac{1}{b-a} \int_{a}^{b}\left|\int_{y}^{x} u^{\prime}(t) d t\right| d y \\
& \leq \frac{1}{b-a} \int_{a}^{b} \int_{y}^{x}\left|u^{\prime}(t)\right| d t d y \\
& \leq \frac{1}{b-a} \int_{a}^{b} \int_{a}^{b}\left|u^{\prime}(t)\right| d t d y=\int_{a}^{b}\left|u^{\prime}(t)\right| d t \\
\int_{a}^{b}|u(x)|^{2} d x & \leq \int_{a}^{b}\left(\int_{a}^{b}\left|u^{\prime}(t)\right| d t\right)^{2} d x \\
& \leq \int_{a}^{b}\left((b-a) \int_{a}^{b}\left|u^{\prime}(t)\right|^{2} d t\right) d x \leq(b-a)^{2} \int_{a}^{b}\left|u^{\prime}(t)\right|^{2} d t
\end{aligned}
$$

which is the Poincaré inequality. The statement in question is true because

$$
(b-a)^{2} \int_{a}^{b}\left|u^{\prime}(t)\right|^{2} d t=(b-a)^{2} \int_{a}^{b}\left|\frac{1}{t}\right|^{2} d t=(b-a)^{2}\left(-\frac{1}{b}+\frac{1}{a}\right)=\frac{(b-a)^{3}}{a b} .
$$

