Part I. Survival kit

6.1. Inextendible 🗹

Let $1 \le p \le \infty$. Consider the open set $\Omega =]-1, 1[^2 \setminus ([0, 1[\times \{0\}).$

- (a) Prove that there does not exist an extension operator $E: W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^2)$.
- (b) Where and why does the argument that you have seen in class fail in this situation?

6.2. Zero trace and H_0^1

Let $\Omega \subset \mathbb{R}^n$ be any open, bounded and non-empty subset of \mathbb{R}^n .

(a) Explain why any function $u \in H_0^1(\Omega)$ can be extended by zero to a function $\overline{u} \in H^1(\mathbb{R}^n)$.

Conversely, one wonders whether any function in $H^1(\mathbb{R}^n)$ which is zero outside Ω be restricted to a function in $H^1_0(\Omega)$. Through the following steps, we shall answer such a question (in the negative).

(b) Let $\Omega \subset \mathbb{R}^n$ be of class C^1 . Let $v \in H^1(\mathbb{R}^n)$ satisfy v(x) = 0 for almost every $x \in \mathbb{R}^n \setminus \Omega$. Prove $v|_{\Omega} \in H^1_0(\Omega)$.

(c) Show that the assumption that Ω is of class C^1 cannot be dropped in part (b): find a bounded, connected, open set $\Omega \subset \mathbb{R}^2$ and $w \in H^1(\mathbb{R}^2)$ satisfying w(x) = 0 for almost every $x \in \mathbb{R}^2 \setminus \Omega$ such that $w|_{\Omega} \notin H^1_0(\Omega)$.

6.3. Ladyženskaja's inequality

As a warm-up to the following problem, please have a look at the *first proof* presented in the lecture notes for the Sobolev-Gagliardo-Nirenberg inequality (Satz 8.5.1 therein).

Adapt that argument to show that there is an embedding $H^1(\mathbb{R}^2) \hookrightarrow L^4(\mathbb{R}^2)$ and prove the estimate

$$\forall u \in H^1(\mathbb{R}^2): \quad \|u\|_{L^4(\mathbb{R}^2)}^4 \le 4\|u\|_{L^2(\mathbb{R}^2)}^2 \|\nabla u\|_{L^2(\mathbb{R}^2)}^2.$$

Part II. Project on compact embeddings

Recall that if $\Omega \subset \mathbb{R}^n$ is a *bounded* domain with boundary of class C^1 and $1 \leq p < n$, then Sobolev's embedding $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$ is *compact* for any $1 \leq q < p^* := \frac{np}{n-p}$. Are the assumptions on the domain Ω necessary for compactness?

6.4. Non-compactness Z

Let $n \in \mathbb{N}$ and $1 \leq p \leq \infty$. Prove that the embedding $W^{1,p}(\mathbb{R}^n) \hookrightarrow L^p(\mathbb{R}^n)$ is not compact.

6.5. Compactness 🗱

(a) Let $n \in \mathbb{N}$ and $1 . Let <math>\Omega \subset \mathbb{R}^n$ be possibly unbounded but of finite Lebesgue measure. Prove that then, the embedding $W_0^{1,p}(\Omega) \hookrightarrow L^p(\Omega)$ is compact.

(Recall that $W_0^{1,p}(\Omega)$ is the closure of $C_c^{\infty}(\Omega)$ with respect to the $W^{1,p}(\Omega)$ -norm.)

(b) Is the statement of part (a) still true, if the space $W_0^{1,p}(\Omega)$ is replaced by $W^{1,p}(\Omega)$?