
  

The binary Golay code and the Leech lattice



  

Recall from previous talks:

Def 1: (linear code)
A code C over a field F is called linear if the code 
contains any linear combinations of its codewords

A k-dimensional linear code of length n with 
minimal Hamming distance d is said to be an  
[n, k, d]-code.



  

Why are linear codes interesting?

● Error-correcting codes have a wide range of 
applications in telecommunication.

● A field where transmissions are particularly 
important is space probes, due to a combination 
of a harsh environment and cost restrictions.

● Linear codes were used for space-probes 
because they allowed for just-in-time encoding, 
as memory was error-prone and heavy.



  

Space-probe example



  

The Hamming weight enumerator

Def 2: (weight of a codeword)
The weight w(u) of a codeword u is the number of its nonzero 
coordinates.

Def 3: (Hamming weight enumerator)
The Hamming weight enumerator of C is the polynomial:

where Ai is the number of codeword of weight i.

WC(X ,Y )=∑
i=0

n

Ai X
n−iY i



  

Example (Example 2.1, [8]) 

For the binary Hamming code of length 7 the 
weight enumerator is given by:

WH (X ,Y )=X7+7 X4Y 3+7 X 3Y 4+Y 7



  

Dual and doubly even codes

Def 4: (dual code)
For a code C we define the dual code C˚ to be the 
linear code of codewords orthogonal to all of C.

Def 5: (doubly even code)
A binary code C is called doubly even if the weights 
of all its codewords are divisible by 4.



  

The lattice Γ
C

To any linear code C we can associate a lattice

where

is the canonical projection.



  

We can relate properties of a code to 
properties of its lattice:

Lemma 1: (Prop 1.3, [8])
Let C be a linear code.

● C is doubly even iff ΓC is an even lattice.

● C is self-dual iff  ΓC is unimodular.

Lemma 2: (Theorem 2.1, [8])
Let Γ be an even unimodular lattice.

Then the dimension of Γ is divisible by 8.

Prop 1: (Prop 2.6, [8])
Let C be a self-dual doubly even code. 

Then the length of C is divisible by 8.



  

Prop 2: (Prop 2.7, [8])  
Let C be a self-dual doubly even code.

Then the weights of its Hamming weight enumerator satisfy

A code satisfying these assumptions is the extended 
Golay code which we will construct later. 



  

Cyclic codes

Def 6: (cyclic code)
A code C is called cyclic if for every codeword 

u = (u0, u1,…, un-1) 

its cyclic shift

us = (un-1, u0,…, un-2)

is also a codeword in C.



  

It is useful to represent such a code C using 
polynomials in Fn[x] (= F[x]/(xn – 1)), i.e.

u = (u0, u1,…, un-1) → f(x) = u0 + u1x + … +un-1xn-1

A cyclic shift of the polynomial associated with 
the word u is then given by xf(x).

Prop 2: (Theorem 46, [14])
A set of elements S in Fn[x] corresponds to a cyclic 
code iff S is an ideal in Fn[x]



  

Theorem 1: (Theorem 47, [14])
Let C be an ideal in Fn[x], and g(x) the monic 
polynomial of smallest degree in C.

Then g(x) is unique and C is generated by g(x).

Prop 3: (Theorem 48, [14])
There is a 1 to 1 correspondence between divisors 
of xn – 1 and ideals of Fn[x].



  

Prop 4: (Theorem 49, [14])
If the degree of g(x) is n – k, then the dimension of 
its corresponding code is k and the generator matrix 
of C is given by all the cyclic shifts of g(x).



  

Example for n = 7



  

Factoring xn – 1

Prop 5: (Theorem 45, [14])
Let α be a root of xn – 1 in the smallest finite field F 
of characteristic p that contains α, and let m(x) be 
its minimal polynomial. Let β be a primitive nth root 
of unity in F, and let α = βs.

If u is the smallest element in the cyclotomic coset 
of n containing s, then 

m(x)=∏
i∈Cu

(x−β i)



  

Cyclotomic cosets for n = 23



  

Quadratic Residue Codes

For p, n primes and p a square mod n we can 
generate a cyclotomic coset by

We call the corresponding code a quadratic 
residue code.

  

J={ j : j≠0 is a square modulo n}



  

Golay Codes

Def 6: (binary Golay code G23)

We call the binary quadratic residue code of length 
23 the binary Golay code.

Def 7: (extended binary Golay code G24)

Based on G23 we define the extended binary Golay 
code as

G24={(u1 , u2 ,…, u24) : (u1 , u2 ,…, u23) ∈ G23 ,∑
i=1

24

ui=0}



  

Theorem 2: (Theorem 2.6 [8])
Let C be a binary (24,212,8)-code containing 0.

Then C is a unique self-dual, doubly even code.

Def 8: (perfect code)
A (2,n,d)-code with d = 2e + 1 is called a perfect code 
if one of the following equivalent conditions holds:
1) Every x in Fn has distance ≤ e to exactly one codeword

2) 



  

Proof Theorem 2



  

Proof Theorem 2



  

Proof Theorem 2



  

Proof Theorem 2



  

Recall:

Prop 2: (Prop 2.7, [8])  
Let C be a self-dual doubly even code.

Then the weights of its Hamming weight enumerator 
satisfy

The Golay code satisfies these assumptions 
and, since its minimum distance  is 7, A4 = 0.



  

Recall:

Def 9: A Steiner system S(t,k,v) is an 
assignment of a set S with v elements to blocks 
of size k s.t. each t-subset of S is contained in 
exactly one block.

Using the extended binary Golay code we can 
generate an S(5,8,24) Steiner system.



  

S(5,8,24)



  

The Leech lattice

Recall from “Construction B”: (Theorem 5.2, [8])

Def 10: The Leech lattice is defined as the set

where X is the set constructed above using G24 
and 

X={x∈ℝn : x (mod 2)∈C ,∑
i=1

n

x i∈4ℤ}
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