The Kissing Number Problem

Ben O'Sullivan

1 Introduction

The Kissing Number Problem (KNP) can be thought of as:

For a convex set K how many non-overlapping translated copies of K can touch K simultaneously?

We will mainly be focusing on the case where $K = S^{d-1}$. The following are some useful definitions that will be used later on.

- Lattice: Let $A = (a_i)_{i \in [n]}$ be n linearly independent vectors in \mathbb{R}^d then $\Lambda := \{\sum_{i=1}^n z_i a_i | \forall i \in [n] : z_i \in \mathbb{Z}\} \subset \mathbb{R}^d$ is the **Lattice** generated by A.
- Packing: Let X be a discrete set in \mathbb{R}^d and K a convex set in \mathbb{R}^d then $K + X := \{K + x | x \in X \text{ and none of the copies of K overlap with each other}\}$ is called the **translative packing** of K. If X is a lattice then K + X is a **lattice packing** of K.
- Kissing Configuration: A kissing configuration is a translative packing of K such that all copies of K touch K, without overlapping.
 - Kissing Number: Let k(K) denote the kissing number of K, i.e. the maximal size of a kissing configuration, where the positions of the copies of K need not have any particular order or regularity, while $k^*(K)$ denotes the kissing number when the copies of K must be arranged in a lattice. k(n) will denote $k(\mathbb{S}^{n-1})$, likewise for $k^*(n)$.
 - Integral Lattice: A lattice Λ is an integral lattice if $\forall u \in \Lambda : (u, u) \in \mathbb{Z}$, and an even integral lattice if $(u, u) \in 2\mathbb{Z}$, and an odd integral lattice otherwise.

Two useful results are, $k^*(2) = k(2) = 6$, the proof of which is easy enough and will be presented during the presentation, and that by definition $k^* \leq k$.

2 General Statement of the KNP and some Results

As we saw in section 1, k and k^* are the largest number of identical copies of a convex set P obtained by arbitrary translations, or by a lattice arrangement of P, respectively, that are non-overlapping while still touching the original set. A nice first upper bound on k and k^* is attributed to Minkowski and Hadwiger.

<u>Theorem</u> 2: (Minkowski-Hadwiger[1])

For an n-dimensional convex body K, $k^*(K) \le k(K) \le 3^n - 1$, where equality holds for parallelepipeds.

The proof consists of a reduction to the case where K is centrally symmetric; showing that if a translate K + x of K touches K it is contained in 3K; finally making use of the n dimensional volume being homogeneous of degree n. This proof nicely demonstrates how the KNP is a localized version of the packing problem. For a detailed proof see [1] Ch. 1.1.

If we now return our focus to spheres, we can use a geometric interpretation of the scalar product,

$$(a,b) = \|a\| \|b\| \cos \theta, \tag{1}$$

where θ is that angle between the vectors a and b, to reformulate the question behind k and k^* . Instead of asking for the maximal number of nonoverlapping congruent copies of a sphere, that touch the original sphere, we can ask,

What is the largest set of
$$x_i \in \mathbb{S}^{d-1}$$
 such that $(x_i, x_j) \leq \frac{1}{2}, \forall i \neq j$?

Here the x_i are referred to as the kissing points, i.e. where the copies of \mathbb{S}^{d-1} touch the original \mathbb{S}^{d-1} . Our new requirement is equivalent to demanding that the minimal angle between any two kissing points is $\frac{\pi}{3}$. This is the same as trying to find the maximal spherical code with distance $\frac{\pi}{3}$ in any given dimension. The new formulation is in fact equivalent to the original question, which can be seen by recalling our result for d = 2, k(2) = 6, and that any plane spanned by x_i and x_j contains the origin and hence a copy of \mathbb{S}^1 .

A general upper bound for d dimensions was found by Kabatiansky and Levenshtein, as stated in [3], who showed:

$$k(d) \le 2^{0.401d(1+o(1))} \tag{2}$$

Dimension	Lower bound	Upper bound
1	2	
2	6	
3	12	
4	24 ^[7]	
5	40	44
6	72	78
7	126	<mark>134</mark>
8	240	
9	306	364
10	500	554

This table [4] shows some known results in small dimensions.

3 The Gregory Newton Problem

The Gregory Newton Problem (GNP) ask the question of what is k(3). The name of the problem comes from a disagreement on this matter by Sir Isaac Newton and David Gregory on the precise value of k(3). Newton believed it equalled 12, while Gregory claimed it equalled 13.

That $k^*(3) \geq 12$ can be seen by looking at the lattice, Λ_3 , generated by $\{(2,0,0), (1,\sqrt{3},0), (1,\frac{1}{\sqrt{3}},\frac{2\sqrt{6}}{3})\}.$

Theorem 1: (Hoppe, Schütte and van der Waerden, and Leech[1])

$$k^*(3) = k(3) = 12\tag{3}$$

To prove this, we require 3 main steps or ideas. Firstly, we do some rudimentary computations in geodesic geometry. Secondly, we require Euler's Formula for polygons: v - e + f = 2, where v corresponds to the number of corners or vertices, e corresponds to the number of edges, and f to the number of faces. Finally, we create a contradiction for the existence of a quadrilateral arrangement on \mathbb{S}^2 .

<u>Proof</u>: Let $X = \{x_1, ..., x_n\} \subset \mathbb{S}^2$ such that $\mathbb{S}^2 + (2X \cup \{0\})$ is a kissing configuration. Let us denote by $||x_i, x_j||_g$ the geodesic distance between $x_i, x_j \in X$. We will construct a "planar" graph on the surface of \mathbb{S}^2 where X corresponds

to the set of vertices, and $(x_i, x_j) \in E$ if $||x_i, x_j||_g < \arccos(\frac{1}{7})$, with this construction we obtain a "planar" graph on or polygonal covering of \mathbb{S}^2 . With some computations on geodesic geometry, we see that the angle between any two edges must be greater than $\frac{\pi}{3}$, and hence, any vertex x_i has at most 5 neighbours. Further computations yield that

$$s(P_3) > 0.5512, s(P_4) > 1.3388, s(P_5) > 2.2261$$
 (4)

and that the lower bound is strictly increasing with n, given our minimal edge length.

Euler's formula now yields:

$$2v - 4 = 2e - 2f = 2e - 2\sum_{i\geq 3} f_i \tag{5}$$

$$=\sum_{i\geq 1} if_{i+2} \tag{6}$$

This in turn yields the inequality,

$$s(\mathbb{S}^2) = 4\pi > 0.5512f_3 + 1.3388f_4 + 2.2261(f_5 + ...)$$
(7)

$$> 0.5512 \sum_{i \ge 1} i f_{i+2} + 0.2314 f_4 + 0.57 (f_5 + \dots) \tag{8}$$

Which implies, $v \ge 13$. However by our previous calculation we get

$$0.44 \ge 0.2314f_4 + 0.57(f_5 + \dots),\tag{9}$$

therefore $f_4 \in \{0, 1\}$ and $f_n = 0$ for $n \ge 5$. If $f_4 = 1$ by Euler's formula we get $f_3 = 20$ and e = 32, a quick construction yields that such a graph cannot exist. If $f_4 = 0$, we have $f_3 = \frac{2e}{3} \Rightarrow 13 + \frac{2e}{3} = e + 2 \Rightarrow e = 33 \Rightarrow \overline{d} > 5$, this however contradicts our previous result of $d(x) \le 5$. Hence v < 13 and $k^*(3) = 12$

4 The KNP in eight and 24 dimensions

In this section we will discuss two results accredited to Levenshtein, Odlyzko, and Sloane ([1] Ch.9). Both proofs proceed in a similar manner and make use of Delsarte's Lemma ([1] Ch.8), which gives conditions on a polynomial function $f(t) = \sum_{i=0}^{k} f_i P_i^{\alpha,\alpha}(t)$, where $P_i^{\alpha,\alpha}$ is the Jacobi polynomial, for $\alpha = \frac{n-3}{2}$, relating to a spherical $\{n, m, \phi\}$ code, such that maximal choice of m, given n and ϕ , is bounded by $\frac{f(1)}{f_0}$, where $k^*(d) = m[d, \frac{\pi}{3}]$.

But first let us introduce some useful notions, that of the radius of a lattice and the set of minimal vectors in Λ :

$$r_{\Lambda} = \min\{\frac{1}{2} \|u\| | u \in \Lambda \setminus \{0\}\}$$
(10)

$$M(\Lambda) = \{ u \in \Lambda | \|u\| = 2r \}$$
(11)

It is easily seen that for Λ a d dimensional lattice, $r\mathbb{S}^{d-1} + \Lambda$ is a lattice Packing of $r\mathbb{S}^{d-1}$ and for any $u \in M(\Lambda)$, $r\mathbb{S}^{d-1} + u$ touches $r\mathbb{S}^{d-1}$ only in its boundary, and hence $k^*(d) = \max_{r_{\Lambda}=1} card(M(\Lambda))$.

Now using the E_8 and Leech lattices $E_8 = \{u \in \frac{1}{2}\mathbb{Z}_8 | u_i - u_j \in \mathbb{Z} \& \sum_{i=1}^8 u_i \in 2\mathbb{Z}\}, \Lambda_{24}$, we obtain lower bounds on $k^*(8)$, and $k^*(24)$, with $M(E_8) = 240$, and $M(\Lambda_{24}) = 196560$, respectively. Now "all" that remains, is to find a polynomial satisfying Delsarte's conditions that gives a tight upper bound. This is exactly what was done, yielding the polynomials,

$$f_8(t) = P_0(t) + \frac{16}{7}P_1 + \frac{200}{63}P_2 + \frac{832}{63}P_3 + \frac{1216}{429}P_4 + \frac{5120}{3003}P_5 + \frac{2560}{4641}P_6 \quad (12)$$

and

$$f_{24}(t) = P_0 + f_1 P_1 + f_2 P_2 + f_3 P_3 + f_4 P_4 + f_5 P_5 + f_6 P_6 + f_7 P_7 + f_8 P_8 + f_9 P_9.$$
(13)

Both offering tight upper bounds and thereby giving the results, $k^*(8) = 240$, and $k^*(24) = 196560$, respectively.

5 Uniqueness of the Kissing Configuration in dimension 8

<u>Theorem 3:</u> (Bannai-Sloane [1])

There is a unique way, up to isometry, of arranging 240 non-overlapping unit spheres in \mathbb{E}^8 so that they all touch another common unit sphere.

The proof of this theorem shows first that any such configuration is a $\{8, 240, \frac{\pi}{3}\}$ spherical code. Then by an optimization argument, shows such a code leads to an integral lattice with "short" generating vectors, and then we apply a lemma, attributed to Kneser [1], which states, any integral lattice generated by vectors of length 1 or $\sqrt{2}$ can be written as a sum of the lattices A_n, Z_n , $n \geq 1, D_n, n \geq 4$, and $E_n, n \in \{6, 7, 8\}$, in order to conclude that the only such sum is equal to exactly E_8 .

So let us take any $\{8, 240, \frac{\pi}{3}\}$ code, $\aleph^* = \{u_1^*, \dots, u_{240}^*\}$. Such a code can be

rewritten as an optimal solution of a linear programming problem. Such optimization problems have dual problems, so let the polynomial $f_8(t)$ be the solution to the dual problem, we note that this polynomial satisfies certain qualities, that imply the only possible values for inner products in \aleph^* are $0, \pm \frac{1}{2}, \pm 1$. Then taking the lattice, $\Lambda^* = \{\sum_{i=1}^{240} \sqrt{2}z_i u_i^* : z_i \in \mathbb{Z}\}$, we obtain $M(\Lambda^*) = \sqrt{2}\aleph^*$ and that this lattice is an even integral lattice.

Finally noting that since E_8 is the only such lattice admitted by Kneser's lemma with at least 240 minimal vectors, Λ^* must be isometric to E_8 , and hence $M(\Lambda^*)$ is isometric to $M(E_8)$.

There exists an identical theorem for the arrangement in 24 dimensions, also by Bannai and Sloane, the proof of which is a bit more extensive and can be found in [1] Ch. 9.4.

6 Musin's Theorem

This section will outline the idea of the proof given by Oleg R. Musin in [2], in which he shows k(4) = 24.

In his paper, Musin finds a maximal spherical $\frac{\pi}{3}$ -code X in \mathbb{S}^3 , i.e. a set X such that $\forall x, y \in X : (x, y) \leq \cos \frac{\pi}{3} = \frac{1}{2}$. By extending Delsarte's method, Musin obtained a strict upper bound k(4) < 25, and since $k(4) \geq 24$ is known, by taking the arrangement given by the D_4 lattice, the claim follows.

The proof is further broken down into showing two lemmas, Lemma A and Lemma B, that together yield the claim. To obtain these lemmas, Musin introduces the following polynomial of ninth degree:

$$f_4(t) := \frac{1344}{25}t^9 - \frac{2688}{25}t^7 + \frac{1764}{25}t^5 + \frac{2048}{125}t^4 - \frac{1229}{125}t^3 - \frac{217}{500}t - \frac{2}{125}.$$
 (14)

Lemma A: Let $X = \{x_1, ..., x_M\}$ be points of the unit sphere \mathbb{S}^3 . Then

$$S(X) = \sum_{i=1}^{M} \sum_{j=1}^{M} f_4(x_i x_j) \ge M^2.$$
 (15)

Lemma B: Suppose $X = \{x_1, ..., x_M\}$ is a subset of \mathbb{S}^3 such that the angular separation between any two points x_i, x_j is at least $\frac{\pi}{3}$. Then

$$S(X) = \sum_{i=1}^{M} \sum_{j=1}^{M} f_4(x_i x_j) < 25M.$$
 (16)

Clearly k(4) = 24 follows from these two lemmas by letting X be a kissing configuration of \mathbb{S}^3 and taking M = k(4).

7 Notation

Here is a brief overview some of the notation used in this handout:

n,d will generally denote natural numbers

 $[n] := \{1, 2, 3, ..., n - 1, n\}$

 ${\cal I}_d$ shall denote the d dimensional unit cube.

s(K) shall denote the surface area of a set K.

 P_n shall refer to a polygon with n sides.

(,) shall be the euclidean scalar product.

References

- Chuanming Zong. Sphere Packings. Springer-Verlag, 1999. ISBN: 0-387-98794-0.
- [2] Oleg R. Musin. "The kissing number in four dimensions'. In: Annals of Mathematics 168 (2008), pp. 1–32.
- [3] N. J. Sloane J. H. Conway. Sphere Packings, Lattices and Groups. 3rd edition. Springer-Verlag, 2017.
- [4] URL: https://en.wikipedia.org/wiki/Kissing_number#Some_ known_bounds. (accessed: 26.03.2021).