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1 Introduction

The Kissing Number Problem (KNP) can be thought of as:

For a convex set K how many non-overlapping translated copies of K can
touch K simultaneously?

We will mainly be focusing on the case where K = Sd−1. The following are
some useful definitions that will be used later on.

Lattice: Let A = (ai)i∈[n] be n linearly independent vectors in Rd then Λ :=
{
∑n

i=1 ziai|∀i ∈ [n] : zi ∈ Z} ⊂ Rd is the Lattice generated by A.

Packing: Let X be a discrete set in Rd and K a convex set in Rd

then K+X := {K+x|x ∈ X and none of the copies of K overlap with
each other} is called the translative packing of K. If X is a lattice
then K +X is a lattice packing of K.

Kissing Configuration: A kissing configuration is a translative packing of K such that all copies
of K touch K, without overlapping.

Kissing Number: Let k(K) denote the kissing number of K, i.e. the maximal size of a
kissing configuration, where the positions of the copies of K need not
have any particular order or regularity, while k∗(K) denotes the kissing
number when the copies of K must be arranged in a lattice. k(n) will
denote k(Sn−1), likewise for k∗(n).

Integral Lattice: A lattice Λ is an integral lattice if ∀u ∈ Λ : (u, u) ∈ Z, and an
even integral lattice if (u, u) ∈ 2Z, and an odd integral lattice
otherwise.

Two useful results are, k∗(2) = k(2) = 6, the proof of which is easy enough
and will be presented during the presentation, and that by definition k∗ ≤ k.
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2 General Statement of the KNP and some

Results

As we saw in section 1, k and k∗ are the largest number of identical copies of a
convex set P obtained by arbitrary translations, or by a lattice arrangement
of P , respectively, that are non-overlapping while still touching the original
set. A nice first upper bound on k and k∗ is attributed to Minkowski and
Hadwiger.
Theorem 2: (Minkowski-Hadwiger[1])

For an n-dimensional convex body K, k∗(K) ≤ k(K) ≤ 3n − 1,
where equality holds for parallelepipeds.

The proof consists of a reduction to the case where K is centrally symmetric;
showing that if a translate K + x of K touches K it is contained in 3K;
finally making use of the n dimensional volume being homogeneous of degree
n. This proof nicely demonstrates how the KNP is a localized version of the
packing problem. For a detailed proof see [1] Ch. 1.1.

If we now return our focus to spheres, we can use a geometric
interpretation of the scalar product,

(a, b) = ‖a‖‖b‖ cos θ, (1)

where θ is that angle between the vectors a and b, to reformulate the ques-
tion behind k and k∗. Instead of asking for the maximal number of non-
overlapping congruent copies of a sphere, that touch the original sphere, we
can ask,

What is the largest set of xi ∈ Sd−1 such that (xi, xj) ≤ 1
2
,∀i 6= j?

Here the xi are referred to as the kissing points, i.e. where the copies of Sd−1

touch the original Sd−1. Our new requirement is equivalent to demanding
that the minimal angle between any two kissing points is π

3
. This is the same

as trying to find the maximal spherical code with distance π
3

in any given
dimension. The new formulation is in fact equivalent to the original question,
which can be seen by recalling our result for d = 2, k(2) = 6, and that any
plane spanned by xi and xj contains the origin and hence a copy of S1.

A general upper bound for d dimensions was found by Kabatiansky
and Levenshtein, as stated in [3], who showed:

k(d) ≤ 20.401d(1+o(1)) (2)
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This table [4] shows some known results in small dimensions.

3 The Gregory Newton Problem

The Gregory Newton Problem (GNP) ask the question of what is k(3). The
name of the problem comes from a disagreement on this matter by Sir Isaac
Newton and David Gregory on the precise value of k(3). Newton believed it
equalled 12, while Gregory claimed it equalled 13.
That k∗(3) ≥ 12 can be seen by looking at the lattice, Λ3, generated by

{(2, 0, 0), (1,
√

3, 0) (1, 1√
3
, 2
√

6
3

)}.
Theorem 1: (Hoppe, Schütte and van der Waerden, and Leech[1])

k∗(3) = k(3) = 12 (3)

To prove this, we require 3 main steps or ideas. Firstly, we do some
rudimentary computations in geodesic geometry. Secondly, we require Euler’s
Formula for polygons: v − e + f = 2, where v corresponds to the number
of corners or vertices, e corresponds to the number of edges, and f to the
number of faces. Finally, we create a contradiction for the existence of a
quadrilateral arrangement on S2.
Proof: Let X = {x1, ..., xn} ⊂ S2 such that S2+(2X∪{0}) is a kissing config-
uration. Let us denote by ‖xi, xj‖g the geodesic distance between xi, xj ∈ X.
We will construct a ”planar” graph on the surface of S2 where X corresponds
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to the set of vertices, and (xi, xj) ∈ E if ‖xi, xj‖g < arccos(1
7
), with this con-

struction we obtain a ”planar” graph on or polygonal covering of S2. With
some computations on geodesic geometry, we see that the angle between any
two edges must be greater than π

3
, and hence, any vertex xi has at most 5

neighbours. Further computations yield that

s(P3) > 0.5512, s(P4) > 1.3388, s(P5) > 2.2261 (4)

and that the lower bound is strictly increasing with n, given our minimal
edge length.
Euler’s formula now yields:

2v − 4 = 2e− 2f = 2e− 2
∑
i≥3

fi (5)

=
∑
i≥1

ifi+2 (6)

This in turn yields the inequality,

s(S2) = 4π > 0.5512f3 + 1.3388f4 + 2.2261(f5 + ...) (7)

> 0.5512
∑
i≥1

ifi+2 + 0.2314f4 + 0.57(f5 + ...) (8)

Which implies, v ≥ 13. However by our previous calculation we get

0.44 ≥ 0.2314f4 + 0.57(f5 + ...), (9)

therefore f4 ∈ {0, 1} and fn = 0 for n ≥ 5. If f4 = 1 by Euler’s formula we
get f3 = 20 and e = 32, a quick construction yields that such a graph cannot
exist. If f4 = 0, we have f3 = 2e

3
⇒ 13 + 2e

3
= e + 2 ⇒ e = 33 ⇒ d > 5,

this however contradicts our previous result of d(x) ≤ 5. Hence v < 13 and
k∗(3) = 12

4 The KNP in eight and 24 dimensions

In this section we will discuss two results accredited to Levenshtein,
Odlyzko, and Sloane ([1] Ch.9). Both proofs proceed in a similar manner
and make use of Delsarte’s Lemma ([1] Ch.8), which gives conditions on a
polynomial function f(t) =

∑k
i=0 fiP

α,α
i (t), where Pα,α

i is the Jacobi polyno-
mial, for α = n−3

2
, relating to a spherical {n,m, φ} code, such that maximal

choice of m, given n and φ, is bounded by f(1)
f0

, where k∗(d) = m[d, π
3
].
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But first let us introduce some useful notions, that of the radius of a lattice
and the set of minimal vectors in Λ:

rΛ = min{1

2
‖u‖|u ∈ Λ\{0}} (10)

M(Λ) = {u ∈ Λ|‖u‖ = 2r} (11)

It is easily seen that for Λ a d dimensional lattice, rSd−1 + Λ is a lattice
Packing of rSd−1 and for any u ∈M(Λ), rSd−1 + u touches rSd−1 only in its
boundary, and hence k∗(d) = maxrΛ=1 card(M(Λ)).
Now using the E8 and Leech lattices E8 = {u ∈ 1

2
Z8|ui−uj ∈ Z &

∑8
i=1 ui ∈

2Z}, Λ24, we obtain lower bounds on k∗(8), and k∗(24), with M(E8) = 240,
and M(Λ24) = 196560, respectively. Now “all” that remains, is to find a
polynomial satisfying Delsarte’s conditions that gives a tight upper bound.
This is exactly what was done, yielding the polynomials,

f8(t) = P0(t) +
16

7
P1 +

200

63
P2 +

832

63
P3 +

1216

429
P4 +

5120

3003
P5 +

2560

4641
P6 (12)

and

f24(t) = P0+f1P1+f2P2+f3P3+f4P4+f5P5+f6P6+f7P7+f8P8+f9P9. (13)

Both offering tight upper bounds and thereby giving the results, k∗(8) = 240,
and k∗(24) = 196560, respectively.

5 Uniqueness of the Kissing Configuration in

dimension 8

Theorem 3: (Bannai-Sloane [1])

There is a unique way, up to isometry, of arranging 240 non-overlapping
unit spheres in E8 so that they all touch another common unit sphere.

The proof of this theorem shows first that any such configuration is a {8, 240, π
3
}

spherical code. Then by an optimization argument, shows such a code leads
to an integral lattice with ”short” generating vectors, and then we apply a
lemma, attributed to Kneser [1], which states, any integral lattice generated
by vectors of length 1 or

√
2 can be written as a sum of the lattices An, Zn,

n ≥ 1, Dn,n ≥ 4, and En, n ∈ {6, 7, 8}, in order to conclude that the only
such sum is equal to exactly E8.
So let us take any {8, 240, π

3
} code, ℵ∗ = {u∗1, ..., u∗240}. Such a code can be
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rewritten as an optimal solution of a linear programming problem. Such op-
timization problems have dual problems, so let the polynomial f8(t) be the
solution to the dual problem, we note that this polynomial satisfies certain
qualities, that imply the only possible values for inner products in ℵ∗ are
0,±1

2
,±1. Then taking the lattice, Λ∗ = {

∑240
i=1

√
2ziu

∗
i : zi ∈ Z}, we obtain

M(Λ∗) =
√

2ℵ∗ and that this lattice is an even integral lattice.
Finally noting that since E8 is the only such lattice admitted by Kneser’s
lemma with at least 240 minimal vectors, Λ∗ must be isometric to E8, and
hence M(Λ∗) is isometric to M(E8).
There exists an identical theorem for the arrangement in 24 dimensions, also
by Bannai and Sloane, the proof of which is a bit more extensive and can be
found in [1] Ch. 9.4.

6 Musin’s Theorem

This section will outline the idea of the proof given by Oleg R. Musin
in [2], in which he shows k(4) = 24.
In his paper, Musin finds a maximal spherical π

3
-code X in S3, i.e. a set X

such that ∀x, y ∈ X : (x, y) ≤ cos π
3

= 1
2
. By extending Delsarte’s method,

Musin obtained a strict upper bound k(4) < 25, and since k(4) ≥ 24 is
known, by taking the arrangement given by the D4 lattice, the claim follows.

The proof is further broken down into showing two lemmas, Lemma A
and Lemma B, that together yield the claim. To obtain these lemmas, Musin
introduces the following polynomial of ninth degree:

f4(t) :=
1344

25
t9 − 2688

25
t7 +

1764

25
t5 +

2048

125
t4 − 1229

125
t3 − 217

500
t− 2

125
. (14)

Lemma A: Let X = {x1, ..., xM} be points of the unit sphere S3. Then

S(X) =
M∑
i=1

M∑
j=1

f4(xixj) ≥M2. (15)

Lemma B: Suppose X = {x1, ..., xM} is a subset of S3 such that the angular
separation between any two points xi, xj is at least π

3
. Then

S(X) =
M∑
i=1

M∑
j=1

f4(xixj) < 25M. (16)

Clearly k(4) = 24 follows from these two lemmas by letting X be a kissing
configuration of S3 and taking M = k(4).
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7 Notation

Here is a brief overview some of the notation used in this handout:
n,d will generally denote natural numbers
[n] := {1, 2, 3, ..., n− 1, n}
Id shall denote the d dimensional unit cube.
s(K) shall denote the surface area of a set K.
Pn shall refer to a polygon with n sides.
(, ) shall be the euclidean scalar product.
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