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1 Introduction

One of our goals of this series is to understand and bound the maximal sphere packing
density in Rn. We have seen solutions for low dimensions but as soon as we start
to consider higher dimensions our understanding rapidly diminishes. To combat that
problem, the main goal today will be to construct an upper bound on that density for
large dimensions. The idea will be to use the spherical codes from two weeks ago [1]. In
fact, we will use an improved upper bound on the size of those and a neat geometrical
argument to transform this upper bound to one suitable for the sphere packing density.
On the way of doing so we will additionally see that the results we encounter give us an
upper bound on the kissing number problem for spheres which we have seen last week
[2].

2 Linear Programming Bounds for Spherical Codes

Recall from two weeks ago,

Definition 1 (Spherical Code). A spherical code of dimension n, cardinality m and
minimum angle ϕ is a set of m points X ⊂ Sn−1 such that for all x, y ∈ X with x 6= y,

〈x, y〉 ≤ cosϕ.

Furthermore, denote by m[n, ϕ] the maximal size, i.e. m, of any spherical code with
dimension n and minimum angle ϕ.

Note, [Def. 1] corresponds to the definition we have seen two weeks ago [1] for A =
[−1, cosϕ].

Remark 1. As we have seen last week [2] the special case where ϕ = π
3 corresponds to

the kissing configuration of the unit sphere and hence m[n, π3 ] is its kissing number.

As already mentioned, we want to improve the upper bound on m[n, ϕ]. Before doing
so, let us recall the bound we want to improve upon. Note, the notation used here is
not identical to the one in [1]. For example, we use a simplified version of the Jacobi
polynomials instead of the Gegenbauer polynomials.
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Definition 2 (Jacobi Polynomials - Simplified). Let α > −1 and k ∈ N0 then the
simplified Jacobi polynomial Pαk is given by

Pαk (t) :=
1

2k

k∑
i=0

(
k + α

i

)(
k + α

k − i

)
(t+ 1)i(t− 1)k−i.

Denote by t1(k, α) ≥ t2(k, α) ≥ . . . ≥ tk(k, α) the k zeros of the polynomial Pαk (t).

Definition 3. Let α = n−3
2 . Denote by F(n, ϕ) the set of polynomials of the following

form.

f(t) =

k∑
i=0

fiP
α
i (t),

where f0 > 0, ∀i ∈ N fi ≥ 0 and f(t) is compatible with A = [−1, cosϕ], i.e.

f
(
A
)
⊆ (−∞, 0].

Theorem 1 (Delsarte). Choose any f ∈ F(n, ϕ), then

m[n, ϕ] ≤ f(1)

f0
.

(Proof: [3, 1])

3 Kabatyanski-Levenshtein Bound for Spherical Codes

Note that the bound in [Thm. 1] depends on our choice of f ∈ F(n, ϕ). We can use that
fact to our advantage and define

I(n, ϕ) := inf
f∈F(n,ϕ)

f(1)

f0
.

This allows us to easily improve the upper bound to

m[n, ϕ] ≤ I(n, ϕ).

The advantage of this bound is that it solely depends on n and ϕ. The problem with it
is that it is harder to calculate. Nevertheless, the following theorem manages to bound
it from above and thus bounds m[n, ϕ] as well.

Theorem 2 (Kabatyanski-Levenshtein). Assume 0 < ϕ < π
2 and denote,

c :=
1− sinϕ

2 sinϕ
.

Then, for sufficiently large n,

logm[n, ϕ]

n
≤ log I(n, ϕ)

n
� (c+ 1) log (c+ 1)− c log c.
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Remark 2. We have seen last week [2] that

k(n) ≤ 20.401n
(
1+o(1)

)
.

That is a direct consequence of [Thm. 2] for ϕ = π
3 , following [Rem. 1].

In order to proof [Thm. 2] we need two additional results. Both of which are ultimately
just properties of the Jacobi polynomials.

Lemma 1. Let s := cosϕ and

τ := − k + 1

k + α+ 1

Pαk+1(s)

Pαk (s)
.

If t1(k, α) < s < t1(k + 1, α), then

I(n, ϕ) ≤ (1 + τ)2

(1− s)τ

(
k + 2α+ 1

k

)
.

And if s− t1(k, α) is sufficiently small or negative, then

I(n, ϕ) ≤ 4

1− t1(k + 1, α)

(
k + 2α+ 1

k

)
.

Proof: The full proof is in [3]. The idea is to construct a polynomial f ∈ F(n, ϕ) such

that f(1)
f0

is off the right form. The idea of the second part is to use the fact that I(n, ϕ)
is an increasing function of s and to consider the first part in the special case where
τ = 1.

Lemma 2. Let c > 0 and k(n) such that

lim
n→∞

α

k
= lim

n→∞

n− 3

2k
=

1

2c
,

then

lim
k→∞

t1(k, α) =
2
√
c(1 + c)

1 + 2c
.

Proof: The full proof is again in [3]. The idea is to bound the series from both sides
by a series that converges to the right value. The bounding series can be obtained by
considering a modified version of the Jacobi polynomial with equal zeros and an ODE
that this modification solves.

Proof of [Thm. 2]. Recall,

c =
1− sinϕ

2 sinϕ
> 0.
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Using the right k(n), [Lem. 2] gives us

lim
k→∞

t1(k, α) =
2
√
c(1 + c)

1 + 2c
= cosϕ.

Additionally, for k large enough we have by [Lem. 1] and the fact that t1(k, α) is increas-
ing, that

I(n, ϕ) ≤ 4

1− t1(k + 1, α)

(
k + 2α+ 1

k

)
≤ 4

1− cosϕ

(
k + 2α+ 1

k

)
.

Using the fact that limk→∞
k
2α = c and Stirling’s formula gives us

log I(n, ϕ)

n
� (c+ 1) log (c+ 1)− c log c.

This concludes the proof as m[n, ϕ] ≤ I(n, ϕ).

4 Sphere Packing Density and Maximal Size of Spherical
Codes

The Kabatyanski-Levenshtein bound from [Thm. 2] has already proven itself to be useful
for the kissing number problem. But as promised it can also be used to bound the sphere
packing density in Rn. The idea here is to construct from a given sphere packing a
corresponding spherical code which has a cardinality corresponding to the density of the
packing. This is achieved in the following theorem through a rather neat geometrical
argument.

Theorem 3 (Cohn-Zhao). For all n ≥ 1 and π
3 ≤ ϕ ≤ π

∆Rn ≤ m[n, ϕ] · sinn ϕ
2
.

Proof. Let P be a sphere packing of unit spheres in Rn with density ∆. Consider Sn−1R ,
a n − 1 dimensional sphere of radius R ∈ [1, 2], in Rn. It can be located such that it
contains at least ∆Rn center points of spheres in P while none of them is concentric
with Sn−1R . This is the case as for a uniformly random location

E
[
# centerpoints of P in Sn−1R

]
=

E
[
Area inside Sn−1R ∩ P

]
Area inside p ∈ P

= ∆Rn,

and so there has to be at least one location at least matching the expected value. Note,
that the non-concentricity condition only affects a null set of possible locations.

Having chosen an appropriate location for Sn−1R we can project the center points of the
spheres in P contained within Sn−1R radially onto Sn−1R .
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Claim 1. The projected points are separated by angles of at least ϕ, where

sin
ϕ

2
=

1

R
.

Note, the angles considered are the ones at the center point of Sn−1R between the corre-
sponding radial lines.

This means that the projected points are a spherical code of dimension n, cardinality
∆Rn and minimal angle ϕ and as such we have

∆Rn ≤ m[n, ϕ]

∆ ≤ m[n, ϕ] · sinn ϕ
2

∆Rn ≤ m[n, ϕ] · sinn ϕ
2
.

Note, the restriction 1 ≤ R ≤ 2 is translated to π
3 ≤ ϕ ≤ π by the equation in the claim.

It only remains to proof the claim.

Proof of [Claim 1]. Denote by γ the angle in consideration. Firstly, the condition R ≤ 2
ensures that the projection is injective. Let u 6= v be the projections and denote by s
the center point of Sn−1R . Clearly, d (s, u) = R = d (s, v) and x := d (u, v) ≥ 2. Hence,
by the law of cosines

cos γ = 1−
( x

2R

)2
.

The right hand size is maximised for x ≥ 2 at x = 2 and so

cos γ ≤ 1− 1

R2
= 1− sin2 ϕ

2
= cosϕ.

In conclusion, γ ≥ ϕ, since cos (·) is strictly decreasing on the relevant section.

5 Upper Bound for Sphere Packing Density

To conclude our discussions, here is a table form [4] summarising the upper bounds for
the densities of the sphere packing attained through [Thm. 2] and [Thm. 3].
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n ∆Rn ≤ . . .

12 9.666×10−1

24 2.637×10−2

36 4.951×10−4

48 7.649×10−6

60 1.046×10−7

72 1.322×10−9

84 1.574×10−11

96 1.786×10−13

108 1.942×10−15

120 2.051×10−17

240 1.267×10−37

360 3.003×10−58

480 4.484×10−79

600 5.036×10−100
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