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Today’s talk is heavily focused on a paper by Henry Cohn and Noam
Elkies from 2002 [1]. They developed a method to upper bound the
maximum sphere packing density in any dimension relying on the Poisson
Summation Formula. We will start with recalling some definitions and
properties from the earlier talks and then start by reviewing the Fourier
transform and the Poisson summation formula. Next we will state the
bounding theorem and look at a simple example following chapter 3 in [1].
After that we will take a look at conditions for a sharp bound following
chapter 5 of [1] and retrace some numerical results made in chapter 7 of
[1]. In the end we will take a short look at why the known lattice packings
in dimensions 8 and 24 are likely unique.

1 Preliminaries

Recall the dual of a lattice:

Definition 1.1 (Dual Lattice) For a given (full rank) lattice Λ ⊂ Rn we define
the dual lattice to be the set of linear forms on Λ with integral value. Since we are
in Rn we have a scalar product 〈·, ·〉 and can identify the dual lattice with a subset
of Rn:

Λ∗ := {y ∈ Rn | ∀x ∈ Λ : 〈x, y〉 ∈ Z}

We also saw that we have something that we called the determinant of the
lattice, which will correspond to the volume of a fundamental region of a
lattice in this talk.
Definition 1.2 (Covolume)

|Λ| := vol(Rn/Λ)

Additionally the following correspondence between a lattice and its
dual holds:

1 = |Λ||Λ∗|
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2 Fourier Transform and Poisson summation

As you might remember from your previous studies we can define the
Fourier series for periodic functions. We can generalize that to multiple
dimensions and even lattices. So if Λ ⊂ Rn is a lattice and ∀u ∈ Λ, ∀x ∈
Rn : f (x + u) = f (x) we can develop it into a Fourier Series

Definition 2.1 (Fourier Series) A function f : Rn → R that is periodic on a
lattice Λ can be developed into a Fourier Series

F(u) := ∑
x∈Λ∗

f̃ (x)e2πi〈x,u〉

where f̃ is defined as

f̃ (t) :=
1
|Λ|

∫
Rn/Λ

f (x)e−2πi〈x,t〉dx.

For sufficiently nice functions f the series F converges to the original
function. Confer the lecture notes on this topic by Oded Regev [5].

Recall the Fourier transform as we have already seen last week:

Definition 2.2 (Fourier Transform) The Fourier transform of an L1-function
f : Rn → R is defined as

f̂ (t) =
∫

Rn
f (x)e−2πi〈x,t〉dx.

Do not confuse the Fourier transform with the coefficients of the Fourier
series. We will always denote the Fourier transform with a hat. Pay
attention that Cohn & Elkies choose a different sign convention regarding
the sign of the exponent of the exponential function. However we stick
to the more common version with the minus sign in the exponent. With
these definitions out of the way we can formulate and prove the Poisson
Summation formula following chapter 2.3. in [3]:

Proposition 2.3 Let Λ ⊂ Rn be a lattice and let f : Rn → R be a function
satisfying the following conditions:

1.
∫

Rn | f (x)|dx < ∞ (i.e. f is L1-integrable on Rn)

2. The series ∑x∈Λ| f (x + u)| converges uniformly for all u belonging to a
compact subset of Rn.

3. The Series ∑y∈Λ∗ f̂ (y) is absolutely convergent.

Then the following holds:

∑
x∈Λ

f (x) =
1
|Λ| ∑

y∈Λ∗
f̂ (y)
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Proof We assume first that Λ = Zn and make a transformation argument
later to extend this to general lattices. Let’s look at the function

F(u) := ∑
x∈Λ

f (x + u).

According to condition 2 this series converges uniformly and therefore F is
continuous. It is also periodic on the lattice Λ = Zn: ∀x ∈ Zn : F(u + x) =
F(u).

Now we can develop its Fourier series, do not be confused by us
seemingly summing over the lattice itself (Zn), in fact we are still summing
over the dual lattice, but Zn is self dual:

∑
y∈Zn

e2πi〈u,y〉 F̃(y),

where F̃(y) :=
∫
[0,1]n F(t)e2πi〈y,t〉dt. Now these F̃ are the Fourier series

coefficients of the periodic function F, but we’ll soon see that they are
equal to the Fourier transform of the original function f , on the dual lattice
points, i.e. ∀y ∈ Λ∗:

F̃(y) = f̂ (y)

If we assume this equality for a little while we can see that because of
Condition 3 we have that the Fourier series converges absolutely and
uniformly, and thus to a continuous function, and hence to F. Now let’s
evaluate F at 0.

F(0) = ∑
y∈Zn

e2πi〈0,y〉 f̂ (y) = ∑
y∈Zn

f̂ (y)

But by definition of F we also have that

F(0) = ∑
x∈Zn

f (x + 0) = ∑
x∈Zn

f (x),

and thus we get the Poisson summation formula

∑
x∈Zn

f (x) = ∑
y∈Zn

f̂ (y).

Now let’s come back to why the Fourier series coefficients of F equal
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the Fourier Transform of f on Λ∗: ∀y ∈ Λ∗:

F̃(y) =
∫
[0,1]n

F(t)e−2πi〈t,y〉dt

=
∫
[0,1]n

∑
x∈Zn

f (x + t)e−2πi〈t,y〉dt

=
∫
[0,1]n

∑
x∈Zn

f (x + t)e−2πi〈t+x,y〉dt

= ∑
x∈Zn

∫
x+[0,1]n

f (t′)e−2πi〈t′,y〉dt′

= f̂ (y)

First we replace F by its definition and then we observe that e−2πim will
be equal to 1 whenever m ∈ Z. Using the identification of the dual lattice
using the scalar product as Λ∗ = {y ∈ Rn | ∀x ∈ Λ : 〈x, y〉 ∈ Z}, we can
multiply by 1 and get e−2πi(〈t,y〉+〈x,y〉), as x ∈ Λ and y ∈ Λ∗.

After exchanging integral and sum we can then shift the integral by
the lattice points and get a tiling of the whole space Rn by the lattice
fundamental cells. (Here: [0, 1]n)

This concludes the proof under our assumption that Λ = Zn. In the
general case there is a matrix M ∈ GLn(R) such that Λ = M ·Zn. Without
loss of generality we can assume the matrix determinant to be positive,
since we can simply rearrange the basis vectors. Using our dual lattice
identification from earlier we can calculate that Λ∗ =

(
Mt)−1 · Zn by

observing that

Λ∗ = {ȳ ∈ Rn | ∀x ∈ Zn(i.e.M · x ∈ Λ) : 〈M · x, ȳ,∈〉Z}
= {ȳ ∈ Rn | ∀x ∈ Zn : 〈x, Mt · ȳ〉 ∈ Z}.

and noting that the last condition is equivalent to ȳ =
(

Mt)−1 for some
y ∈ Zn.

Writing down what we know so far:

∑
x̄∈Λ

f (x̄) = ∑
x∈Zn

f (Mx) = ∑
x∈Zn

fM(x) = ∑
y∈Zn

f̂M(y)

Where we just defined the function fM to be a variant of f where we first
left multiply the argument by M.
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Let’s calculate the transform of fM then for y ∈ Zn:

f̂M(y) =
∫

Rn
f (Mt)e−2πi〈t,y〉dt

=
1

det(M)

∫
Rn

f (t′)e−2πi〈(M−1t′),y〉dt′
(

t = M−1t′
)

=
1
|Λ|

∫
Rn

f (t′)e−2πi〈t′,(M−1)
t
y〉dt′

=
1
|Λ| f̂

((
Mt)−1 y

) ((
M−1

)t
=
(

Mt)−1
)

This means it is evaluating f̂ on the lattice points of the dual lattice, since
Λ∗ =

(
Mt)−1 ·Zn. Thus we can finaly conclude what we set out for:

∑
x∈Λ

f (x) = ∑
y∈Zn

f̂M(y) =
1
|Λ| ∑

y∈Λ∗
f̂ (y).

�

Why is this remarkable formula helpful? As an example we can use it
to calculate a solution to the Basel problem

Proposition 2.4 (Basel problem)

∞

∑
n=1

1
n2 =

π2

6

The following proof was pointed out to me by Kaj Bäuerle and can be
found in many other resources, such as an online blog of Zilin Jiang [4].

Proof We’d like to find a function f that gives us the stated series when
summed over. A natural approach is to use f (n) = 1

n2 but we will see in a
minute that that does not work out. So we think a bit harder and come up
with

f (x) =
1

x2 + c2 ,

for some c > 0. After the calculation we will let c→ 0 and get the desired
result.

The Fourier Transform can be calculated to be

f̂ (y) =
π

c
e−2πc|y|.

Let’s check the three conditions so that we can do Poisson summation
with the lattice Λ = Z. Condition 1 demands L1-integrability. As we
already succeeded in determining the Fourier Transform this condition is
fulfilled. Condition 2 wants that ∑x∈Z| f (x + u)| converges uniformly. This
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also holds since the denominator is of high enough degree. Finally we need
that the sum of the Fourier transform converges absolutely:

∑
y∈Z

| f̂ (y)| = ∑
y∈Z

|π
c

e−2πc|y|| < ∞

Looking carefully at the terms we notice that the exponential terms tend to
0 fast enough (faster than O(n−1+ε)) to fulfill the Condition 3.

Thus we can apply the summation formula and get

∑
x∈Z

1
x2 + c2 = ∑

x∈Z

f (x)

= ∑
y∈Z

f̂ (y)

= ∑
y∈Z

π

c
e−2πc|y|

=
π

c
e2πc + 1
e2πc − 1

and thus
∞

∑
n=1

1
n2 + c2 =

1
2

(
π

c
e2πc + 1
e2πc − 1

− 1
c2

)
Now we can take the limit of c→ 0, which produces the desired series

on the left hand side and

lim
c→0+

1
2

(
π

c
e2πc + 1
e2πc − 1

− 1
c2

)
=

π2

6

as claimed. �

For the purpose of this talk we’ll define a slightly different condition
for the validity of the Poisson Summation Formula:

Definition 2.5 We call a function f : Rn → R admissible⇐⇒ ∃c, ε > 0∀x ∈
Rn s.t.

| f (x)| < c (1 + |x|)−n−ε , and

| f̂ (x)| < c (1 + |x|)−n−ε .

These bounds give us all the three conditions, we can calculate the
Fourier transform and the sum ∑y∈Λ∗ f̂ (y) is absolutely convergent (condi-
tions 1 and 2). But comparing with the bound on f we can also see that
∑x∈Λ f (x + u) is absolutely convergent regardless of the value of u and
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thus uniformly convergent. For a more careful argument see Corollary 2.6
Chapter VII, p. 252 [6].

We will also only be interested in this equality which we can take
directly from our proof of the Poisson summation formula: Let f : Rn → R

be an admissible function, Λ ⊂ Rn any lattice and v ∈ Rn any vector, then

∑
x∈Λ

f (x + v) =
1
|Λ| ∑

y∈Λ∗
f̂ (y)e2πi〈v,y〉 (2.1)

3 Cohn-Elkies bound for sphere packing density

Now that we have made ourselves familiar with the Poisson Summation
Formula let’s go back to the sphere packing problem and move on to the
main theorem of the paper of Cohn & Elkies [1].

Let’s familiarize ourselves with the center density first. We saw that for
a lattice packing (i.e. each lattice point is the center of a sphere of radius
r/2 where r is the length of a shortest nonzero vector) the packing density
is given by

∆Λ =
1
|Λ|

πn/2

Γ
( n

2 + 1
) ( r

2

)n
,

where Γ denotes the Gamma function and

πn/2

Γ
( n

2 + 1
) ( r

2

)n
= vol (Br/2(0))

denotes the volume of a ball of radius r/2 in n dimensions.
One can think of this as the equivalent of one ball fitting into a funda-

mental cell of the lattice. Now we switch back to the setting of packings
using unit balls (for a given lattice we can simply scale it so that a shortest
vector has length 2) and define the so called ‘center density’ as the number
of ball centers per unit volume.

Definition 3.1 (Center Density) Given this discussion we define the center
density δ for packings using unit balls using the following equation

∆ =
πn/2

Γ
( n

2 + 1
)δ

When using the formula for the density of a lattice packing and can-
celing out we get for a lattice packing of radius r/2 the following center
density: (r/2)n /|Λ|.

Next we need to be a bit careful how we handle our packings. First
of all any general packing of course does not need to be a lattice packing,
it even does not need to be periodic. But we can get arbitrarily close
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to the greatest packing density in Rn for any given n using a periodic
packing (c.f. Appendix A of [1]). Any periodic packing can be defined as a
lattice packing with finitely many translates of that lattice. So any periodic
packing is defined by a lattice Λ ⊂ Rn and a non empty set of vectors
v1, . . . vN ∈ Rn such that none of their differences is a lattice point.

Theorem 3.2 Let f : Rn → R be an admissible function that is not identical to
0. If f fulfills

1. f (x) ≤ 0 for |x| ≥ 1, and

2. f̂ (y) ≥ 0, for all y,

then the center density of n-dimensional sphere packings is bounded from above by

f (0)
2n f̂ (0)

.

If f̂ (0) = 0 we interpret the equality as +∞ giving no meaningful
bound (but still satisfying the statement).

Proof As discussed it is enough to prove this for periodic packings, so let
Λ ⊂ Rn be a lattice and v1, . . . , vN ∈ Rn, N > 0 be a set of vectors such
that none of their differences give a lattice point. By rescaling (which does
not change the center density) we can limit ourselves to the case where a
shortest lattice vector has length 1 and our packing thus contains balls of
radius 1/2. The center density is then given by

δ =
N

2n|Λ| .

Now let’s use the Poisson summation formula given by equation 2.1:

∀v ∈ Rn : ∑
x∈Λ

f (x + v) =
1
|Λ| ∑

y∈Λ∗
f̂ (y)e2πi〈v,y〉

Let’s play with the sums by summing twice over all translation vectors.

∑
1≤j,k≤N

∑
x∈Λ

f (x + vj − vk) =
1
|Λ| ∑

y∈Λ∗
f̂ (y) ∑

1≤j,k≤N
e2πi〈vj−vk ,y〉

=
1
|Λ| ∑

y∈Λ∗
f̂ (y)

∣∣∣∣∣ ∑
1≤j≤N

e2πi〈vj,y〉

∣∣∣∣∣
2

By condition 2 we know that f̂ is nonnegative so every term on the right
hand side is bounded from below by the summand y = 0 which equals
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N2 f̂ (0)/|Λ|. On the other side of the equation x + vj − vk is the difference
between two centers of the packing which cannot get closer than 1, thus
|x + vj − vk| < 1 ⇔ x = 0 ∧ j = k. Therefore condition 1 asserts that
whenever |x + vj − vk| ≥ 1 the term is nonpositive and we get an upper
bound for the entire sum by N f (0). Thus,

N f (0) ≥ N2 f̂ (0)
|Λ|

which we can rearrange recalling the definition of the center density (equa-
tion 3) to

δ ≤ f (0)
2n f̂ (0)

.
�

We observe that the proof is entirely invariant under rotations, thus we
can assume f to be a radial function.

Let’s look at an example for n = 1. We define the function f : R→ R

by
f (x) := (1 + |x|) χ[−1,1](x),

where χ[−1,1] is the characteristic function on the unit disk. How did we
get to this function? We observe that it is the convolution of χ[−1/2,1/2] with
itself, i.e.

χ[−1,1](x) =
∫

R
χ[−1/2,1/2](t) · χ[−1/2,1/2](x− t)dt

The Fourier transform of χ[−1,1](x) can be calculated using the convolution
theorem to be (

sin(πt)
πt

)2

.

In order to use the theorem we need to check the conditions. Since
f (x) = 0 whenever |x| ≥ 1 it fulfills the first condition 1 and f̂ is also
nonnegative for t 6= 0 and can be continuously extended at t = 0 to 1.

Admissibility follows by both functions being bounded by 1 with
bounded support in the case of f and decaying sufficiently fast enough in
the case of f̂ . Therefore we get a bound for the center density by using
Λ = Z and one translation vector v1 = 0:

δ ≤ f (0)
2n f̂ (0)

=
1
2

.

We notice that this is a sharp bound, since the packing defined by the lattice
2Z attains the maximum packing density of 1.

In the following discussion we’ll use a variant of this theorem:
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Theorem 3.3 Let f : Rn → R be an admissible function fulfilling three condi-
tions:

1. f (0) = f̂ (0) > 0,

2. f (x) ≤ 0 for |x| ≥ r, and

3. f̂ (y) ≥ 0 for all t.

Then the center density of unit sphere packings in Rn is bounded from above by
(r/2)n.

This is a scaled variant of the first theorem and can be proved either by
being careful in regard to scaling in proof of the first theorem or directly as
shown in Th 3.2. [1].

Before we concern ourselves with the question how to find such suitable
functions f we first make some observations about the conditions for a
sharp bound.

4 Conditions for a sharp bound

As mentioned in the beginning this chapter follows closely chapter 5 in [1].
Most of the well-known examples of the best lattice packings in di-

mensions 2, 8 and 24 (the A2 root lattice in dimension 2, E8 root lattice in
dimension 8 and the Leech lattice in dimension 24) are equal to their dual
(so called isodual lattices). So they must have covolume 1. This is not true
in dimension 2, but we can rescale A2 so that it is isodual using a rotation.

Suppose Λ is an isodual lattice of covolume |Λ| = 1 and f is a radial
function fulfilling the conditions in theorem 3.3 giving a sharp bound, i.e.
r is the length of a shortest nonzero vector in Λ. Then applying Poisson
summation yields

∑
x∈Λ

f (x) = ∑
y∈Λ∗

f̂ (y).

After substracting f (0) = f̂ (0) from both sides we are left with only
nonpositive terms on the left hand side and nonnegative terms on the right
hand side, demanding that ∀x ∈ Λ \ {0} and ∀y ∈ Λ∗ \ {0} f (x) = f̂ (y) =
0.

One can naturally try to construct the function f by a the knowledge of
the zeros attained above. In one dimension the following f works:

f (x) =
(
1− x2)∏

k≥2

(
1− x2

k2

)2

=
1

1− x2

(
sin (πx)

πx

)2

This has the right zeros and also fulfills f (x) ≤ 0 for |x| ≥ 1. If we were to
go ahead and compute the Fourier transform we would even get that f̂ ≥ 0.
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It has support [−1, 1] and is positive in (−1, 1). It gives a tight bound, so
it is another way to prove the optimality of the known sphere packings in
1 dimension. However it is hard to generalize this approach. One could
replace the sine function by a Bessel function, but that does not give sharp
bounds for n > 1.

One thing to note here is that f̂ cannot have compact support (i.e.
bounded support) for n > 1. If it did, then the zeros of f could not be
sufficiently densely-spaced. More precisely: If f̂ is a ranotdial function
with support inside of the ball BR(0) of radius R around the origin then
the common value of f (r) for vectors of length r satisfies

f (r) =
∫

BR(0)
f̂ (t)e2πi〈rx,t〉dt,

where x ∈ Rn is any vector with |x| = 1. Thus we get an entire function of
r and for all r ∈ C:

| f (r)| ≤ e2πR|r|
∫

BR(0)

∣∣∣ f̂ (t)∣∣∣ dt

so f is a function of exponential type. One can use Jensen’s formula to
argue that f can have at most linearly spaced zeros, but the nonzero vectors
in the Leech lattice have lengths

√
2k for integers k > 1 and those in E8

have lengths
√

2k for integers k > 0. Since f needs to vanish at these vector
lengths, the roots are too densely spaced for f̂ to have compact support.

Maybe the whole restriction to radial functions is too limiting? This
seems unlikely since we can simply rotate a lattice and f must still vanish
on the points in order to give a sharp bound.

5 Numerical results and conjectures in dimension 2, 8
and 24

Again as mentioned earlier this section follows closely chapter 7 in [1].
Regardless of our fruitless attempts in the previous chapter we can now

do some numerical optimization to improve on the best known bounds (in
2002). We keep in mind that the length of a shortest vector in a given lattice
gives us the density of the corresponding lattice packing. Thus if we can
show that in a given lattice Λ ⊂ Rn there is a vector of length r we have
bounded the density of the best sphere packing in that dimension.

Therefore we can examine the following variant of our theorem for
isodual lattices.

Proposition 5.1 Let g : Rn → R be a radial, admissible function, not identical
to zero, satisfying the following three properties:
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1. g(0) = 0,

2. g(x) ≥ 0, for |x| ≥ r for some r > 0,

3. ĝ = −g.

Then every isodual lattice in dimension n must contain a nonzero vector of length
at most r.

Note that condition 3 is well defined since we can directly map each
lattice point to a linear form in the dual lattice (isometrically). With this
proposition the problem becomes finding a suitable radial function g and
minimizing the distance r from the origin at which it stays nonnegative for
increasing r.

Proof (of special case) For simplicity, as it suffices for our numerical cal-
culations, we assume g(x) > 0 if |x| � 0. Let Λ ∼= Λ∗ be an isodual lattice.
Then we use Poisson summation, notice that |Λ| = 1:

∑
x∈Λ

g(x) = ∑
y∈Λ∗

= − ∑
x∈Λ

g(x),

so
∑

x∈Λ
g(x) = 0.

But we know from condition 2 that for all |x| > r the terms must be
nonnegative. Thus together with our additional assumption (that there are
positive terms for larger r) in order for the sum to vanish the lattice must
contain a vector of length at most r where g is allowed to attain a negative
value. �

About the relationship with the upper bound theorems: For any given
function fulfilling the conditions of theorem 3.3 we can set g = f̂ − f , thus
the bound for isodual lattices is at least as good as for general sphere
packings.

Now we want to construct a suitable function g. Conceptually we take
certain polynomials that we multiply with a Gaussian to decay fast enough
for r → ∞. Let Lα

k (x) be the so called Laguerre polynomials orthogonal
with respect to the measure e−xxαdx on [0, ∞). Set α = n/2− 1 and define
for k ≥ 0:

gk(x) := Lα
k
(
2π|x|2

)
e−π|x|2

These functions form a basis for the radial eigenfunctions of the Fourier
transform, with eigenvalues (−1)k. Now consider a linear combination
of g1, g3, . . . g4m+3 and require it to have a root at 0 and double roots at
z1, . . . zm. Now we can calculate the r > 0 for which the function g makes
the last change of sign. Together with an initial guess for the zi we have
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an optimization problem where we can locally minimize the value of r via
small perturbations of the initial zi. When increasing m this method should
give better results.

With this method we can achieve results for isodual lattices, but there’s
no reason that the best sphere packing should be given by an isodual lattice.
But we can transform our calculated functions g and make them applicable
for the setting of theorem 3.3 without changing r as follows: Let h be a
linear combination of the remaining g0, g2, . . . , g4m+2 with double zeros
at z1, . . . , zm such that g + h has a double zero at 0. In the examples that
Cohn & Elkies computed g + h then has constant sign, without loss of
generality positive. Therefore f := −(g + h) is nonpositive outside radius
r with Fourier transform f̂ = g + h that is nonnegative everywhere and
f (0) = f̂ (0). Now with theorem 3.3 we get the same bound for general
sphere packings that g proves for isodual lattices. They also note that it is
not clear that this f fulfills the rest of the conditions for theorem 3.3 but it
turns out that f does that in their concrete calculations.

Their results for m = 11 in dimensions 11 and 24 come very close to the
optimal density of the known packings. In dimension 8 with

2πr2 = 12.56637375,

they are within a factor of 1.000001 of equality and in dimension 24 with

2πr2 = 25.1342216

they are within a factor of 1.0007071 of equality. See the tables in chapter
7 of [1] for a listing of the final values for the roots z1, . . . , zm as well as
numerical results for r in other dimensions.

This leads to the following conjectures:

Conjecture 5.2 (Conjecture 7.2. in [1]) The smallest possible value r in propo-
sition 5.1 equals that in Theorem 3.3, and for each optimal g from proposition 5.1,
there exists an optimal f from Theorem 3.3 such that g = f̂ − f .

Conjecture 5.3 (Conjecture 7.3. in [1]) There exists funtions that satisfy the
hypothesis of Theorem 3.3 and solve the sphere packing problem in dimensions 2, 8
and 24.

This conjecture will be the main topic in our concluding talk next week,
where we’ll see a construction in the dimensions 8 and 24. However
according to Danylo Radchenko the problem is still open in dimension 2.

Conjecture 5.4 (Conjecture 7.4. in [1]) The numerical method described above
gives bounds that converge (as m→ ∞) to the optimal bounds obtainable using
Theorem 3.3.
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6 conditions for uniqueness of optimal packing

This section follows closely chapter 8 of [1].
It is conjectured that the E8 and Leech lattices give a unique (among

periodic sphere packings) packing achieving maximum density. We will dis-
cuss an argument for this based on a slightly stronger version of Conjecture
5.3:

Let Λ2, Λ8 and Λ24 denote the isodual scaling of the hexagonal lattice,
the E8 root lattice and the Leech lattice respectively.

Conjecture 6.1 For n ∈ {2, 8, 24}, there exists a function that satisfies the hy-
pothesis of Theorem 3.3 to prove that Λn is the densest packing in Rn. Furthermore,
this function and its Fourier transform have roots only at the vector lengths in Λn.

Let n be 8 or 24, so that Λn is a unimodular lattice and f a function
fulfilling this conjecture 6.1. Suppose we have a maximally dense packing
using a lattice Λ and translates v1, . . . , vN , whose differences are not in Λ.
Without loss of generality we can scale the lattice so that |Λ| = N and
assume v1 = 0.

Now we can again apply Poisson summation and get

∑
1≤j,k≤N

∑
x∈Λ

f (x + vj − vk) =
1
|Λ| ∑

y∈Λ∗
f̂ (y)

∣∣∣∣∣ ∑
1≤j≤N

e2πi〈vj,y〉

∣∣∣∣∣
2

.

Again the terms f (0) = f̂ (0) cancel each other out (remember we are in the
setting of Theorem 3.3), and we get in particular that each vector x + vj− vk
must be a root for f . Now we use the following lemma:

Lemma 6.2 Let S ⊂ Rn such that 0 ∈ S and there are n linearly independent
vectors in S. If ∀x, y ∈ S ∃k ∈ 2Z≥0 s.t. |x− y| =

√
k then the subgroup of Rn

generated by S is an even integral lattice.

Recall that in an even integral lattice the scalar product of two lattice vectors
is an integer and the norm of each lattice vector is even.

Proof For all x, y ∈ S we have 〈x, y〉 ∈ Z since

〈x, y〉 =
(
|x− 0|2 + |y− 0|2 − |x− y|2

)
/2 ∈ Z,

and the norm |x|2 of any element in S is an even integer (using that 0 ∈ S).
The same holds then for integer linear combinations of the elements of S.�

Now we can use the strengthening property that f has roots only at the
vector lengths in Λn. That is at r =

√
2k for k > 0 in dimension 8 and for

k > 1 in dimension 24 and since f needs to vanish on all points in Λ we
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have that the length of the vectors in Λ needs to be square roots of even
integers as well.

Thus the subgroup L ⊂ Rn created by our periodic packing in question
is an even integral lattice following the Lemma.

Now we have that in an integral lattice the covolume must always be
the square root of an integer, so |Λ| ∈

{
1,
√

2,
√

3, 2, . . .
}

. And thus L can
have at most one point per unit volume with exactly one point if the lattice
is unimodular, i.e. |Λ| = 1. However since we know the density of the
packing and |Λ| = N the period packing has one sphere per unit volume.
Thus N = 1 and the periodic packing is given by the (unimodular) lattice
Λ. Now it needs to have shortest vectors equal to those in Λ8 and Λ24
respectively in order to attain the maximum density.

Such lattices are unique (see Chapters 16 and 18 in [2]).
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