
Overview and motivation

Danylo Radchenko

March 3, 2021

1 / 26



The sphere packing problem

Problem (The sphere packing problem)

What is the best way to pack equal spheres in Rd?

More precisely, we are interested in covering as large a portion of the space as possible
by non-overlapping spheres (or balls) of radius R.

A precise formulation of this problem requires some care (for example in defining what
exactly is the portion of the space covered by spheres).
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The Kepler Conjecture

The first known formulation of the sphere packing problem (in 3 dimensions) goes
back to Johannes Kepler’s manuscript “The Six-Cornered Snowflake” from 1611. His
interest in arrangements of spheres came from his correspondence with an English
astronomer Thomas Harriot. Harriot himself was studying the problem of how to best
stack cannonballs at the behest of Sir Walter Raleigh.
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The Kepler Conjecture

Kepler has conjectured that the best
way to pack spheres in three dimensions is achieved by
putting layers of hexagonal lattices on top of each other.

The Kepler conjecture was proved in 1998 by Thomas
Hales in a computer-assisted tour de force proof by
exhaustion following some earlier ideas due to Fejes Tóth.

A formal proof verification using automated
proof checking software was completed in 2014.
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Optimal sphere packing in R2
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Optimal sphere packing in R3
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Optimal sphere packings in R3

hexagonal close-packed face-centered cubic
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Known results for the sphere packing problem

d Configuration Proof

1 Z trivial

2 A2 Thue (1890), Fejes Tóth (1940)
3 fcc, hcp, ... Hales (1998/2014)
8 E8 Viazovska (2016)

24 Λ24 Cohn-Kumar-Miller-R.-Viazovska (2016)

There are also reasonable conjectures for what the answer should be for d = 4, 5, 6, 7.

For d ≤ 8 the best packing should be achieved by a certain root lattice.
These arise in the classification of finite-dimensional simple Lie algebras.

The Leech lattice is of a different nature and it was first constructed from a certain
exceptional error-correcting code.
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The problem of the thirteen spheres

In 1694 Isaac Newton and David Gregory have discussed the following question.

Question

Can a sphere touch 13 spheres of the same size?

Newton believed that the answer is “no”, while Gregory believed that it is “yes”.

One can easily arrange 12 spheres to touch a given sphere, but there is enough room
to move them around.
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A configuration of 12 spheres touching another one
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The kissing number problem

In general, one can ask the same question in d dimensions.

Problem (The kissing number problem)

What is the maximal number of unit spheres that can touch a given unit sphere in Rd?

This is a spherical analogue of the sphere packing problem.

A slightly different formulation is that we are interested in finding the maximal value
of N for which there exists points x1, . . . , xN ∈ Sd−1 satisfying

〈xi , xj〉 ≤ 1/2 for all i 6= j

Any such set {x1, . . . , xN} is called a kissing configuration
and the maximal value of N (for given d) is called the kissing number.
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Known results for the kissing number problem

d kissing number Proof

1 2 trivial

2 6 easy
3 12 Schütte and van der Waerden (1953), Leech (1956)
4 24 Musin (2003)
8 240 Levenshtein (1979)

24 196560 Odlyzko and Sloane (1979)

With the exception of d = 4 this table mirrors that for the sphere packing problem.

For d = 8 and d = 24 the best kissing configuration is unique and comes from the
exceptional lattices (E8 and the Leech lattice).
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Spherical codes and spherical designs

A generalization of the question about kissing configurations is the question about
spherical codes.

Definition (Spherical codes)

Given a subset S ⊆ [−1, 1), we call a set of points {x1, . . . , xN} ⊆ Sd−1 a spherical
S-code, if one has

〈xi , xj〉 ∈ S for all i 6= j

If we take S = [−1, 1/2], we recover the notion of a kissing configuration.

Similarly to the kissing number problem one can ask what is the maximal size of a
spherical S-code.
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Spherical codes and spherical designs

An interesting case arises already when |S | = k is finite. Then spherical codes are
k-distance sets, i.e. there are only k distinct distances that occur between xi ’s.

Delsarte, Goethals and Seidel have found a bound on the size of spherical S-codes that
depends only on k = |S |. They also found that the same bound serves as a lower
bound on the size of spherical designs.

Definition (Spherical designs)

A spherical t-design is a set {x1, . . . , xN} ⊆ Sd−1 such that

1

N

N∑
i=1

p(xi ) =

∫
Sd−1

p(x)dµ(x)

for all polynomials p of degree ≤ t.
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Spherical codes and spherical designs

As it turns out, a spherical S-code that achieves the Delsarte-Goethals-Seidel bound
must also be a strong spherical design. Such configurations that achieve these bounds
are called tight spherical designs.

It turns out that the shortest vectors of the E8 lattice and the Leech lattice are
particularly nice tight designs. This fact is also related to their optimality as kissing
configurations.
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Transmission of information

There is a discrete side to the story, which surprisingly has to do with the
mathematical theory of communication as laid out by Claude Shannon in 1948.

Very roughly, the basic problem is how well can one communicate a message over a
channel with noise that can distort the signal.
For simplicity, one can think of a signal as a sequence of bits, and noise can,
independently and with small probability, flip some of the bits.
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Error-correcting codes

A very simple way in which one can control the errors over a noisy channel is to group
the bits into blocks, and add to each block an additional bit equal to the parity of the
sum in the block.

This allows one to detect if a single error has occurred in a block, but does not allow
one to find which bit was flipped.
It turns out, that one can add more control bits to also be able to detect where the
error has occurred and automatically fix it. That this is possible was realized by
Richard Hamming, and he also constructed the first error-correcting code:
the Hamming (7,4) code.
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Error-correcting codes

In general, we represent bits by elements of the field with two elements F2. Then
blocks of n bits are elements of the vector space Fn

2. One introduces the Hamming
distance between two elements x , y ∈ Fn

2 as

d(x , y) = #{1 ≤ i ≤ n : xi 6= yi}

Definition (Linear codes)

An [n, k , d ]-binary linear code is a linear subspace V ⊆ Fn
2 of dimension k such that

any two distinct vectors in V have Hamming distance ≥ d .

With an [n, k , d ]-code one can send blocks of n bits encoding k bits of information in a
way that can detect up to d − 1 errors and correct up to (d − 1)/2 errors.

Hamming’s (7,4)-code is a binary linear [7, 4, 3]-code.
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From error-correcting codes to sphere packings

One can easily recognize that error-correcting codes are analogues of sphere packings
for the Hamming distance. Moreover, one can construct (good) sphere packings from
(good) codes.

There are several ways of doing this, the easiest is to embed the codewords as
elements of the set {0, 1}n ⊂ Rn and extend to a (2Z)n-periodic set.
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Binary Golay code

There is a particularly interesting binary linear code that was discovered by
Marcel J. E. Golay in 1949. This is the so-called extended binary Golay code with
parameters [24, 12, 8].

It has several remarkable features:

It is the unique binary code with parameters [24, 12, 8]

Its automorphism group is a sporadic simple group (the Mathieu group M24)

If one removes the last coordinate one obtains a perfect [23, 12, 7] binary code
(Hamming balls of radius 3 cover F23

2 )
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Steiner systems

Linear codes are analogues to lattices in the Euclidean case. Steiner systems could be
though of as analogues of spherical codes and spherical designs.

Definition (Steiner system)

A Steiner system S(n, k , l) is a set S of k-subsets of X = {1, . . . , n} such that any
l-subset of X is contained in exactly one element of S.

As a (rather exceptional) example: a Steiner system S(24, 8, 5) is given by the
codewords of the extended binary Golay code with eight 1’s.
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The Leech lattice

In 1965 John Leech has constructed a remarkable lattice in 24 dimensions using the
[24, 12, 8]-Golay code. Leech was interested in constructing good sphere packings in
small dimensions, and it is now known that his lattice in fact gives an optimal packing
in 24 dimensions.

Curiously, the construction of this lattice was not given much special prominence, and
its description occupied less than a page in a supplement to his 1964 paper.
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Conway groups

Leech was interested in finding the symmetries of his lattice, but was unable to answer
this question.

The group of symmetries of the Leech lattice was analyzed by J. H. Conway in 1968,
and as a result he found three new sporadic simple groups that now bear his name.

Sporadic simple groups are a finite list of 26 (or 27) groups that occupy an exceptional
place in the classification of finite simple groups (among cyclic groups, alternating
groups, and 16 families of groups of Lie type).
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Modular forms

The final topic we will discuss in the seminar is modular forms. Modular forms are
certain special analytic functions on H = {z ∈ C : Im z > 0}.

We will be interested in
modular forms for SL2(Z); these are analytic functions f : H→ C that satisfy

f
( aτ + b

cτ + d

)
= (cτ + d)k f (τ) ,

(
a b
c d

)
∈ SL2(Z)

plus some growth conditions. Here k ∈ Z is called the weight of the modular form f .

Modular forms are a very deep subject with many interesting number-theoretic
connections. A reason for this is a combination of two facts

many “interesting” arithmetic sequences are encoded by modular forms

spaces of modular forms are finite-dimensional and “computable”
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Modular forms

To give an example, let us consider the sum of k squares function

rk(n) = #{(a1, . . . ak) ∈ Zk : a21 + · · ·+ a2k = n}

Then the generating series

θk(τ) =
∑
n≥0

rk(n)qn

becomes a modular form of weight k/2 if we set q = e2πiτ (though not for the full
group SL2(Z)). This is a simplest example of a theta function.

As an application: knowing a basis for the corresponding space of modular forms for
k = 4 allows one to deduce the following identity (due to Jacobi)

r4(n) = 8
∑
4-d |n,

d , n ≥ 1 .

This implies Lagrange’s four-square theorem (r4(n) > 0).
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Modular forms

In this seminar they will appear in two quite different roles:

through classical theory of theta functions, as generating functions encoding the
distance distribution of a lattice

in construction of optimal functions for the linear programming bound as they
have appeared in the work of Viazovska

These topics will be the subject of the last four talks of the seminar.
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