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0 Introduction

The object of this course is to present some of the stochastic processes, which often occur
in applications. Typical examples are the Poisson process, the renewal processes, Markov
chains and Brownian motion.

The present introduction will discuss these objects in an informal way and give some
flavor of these topics.

0.1 Poisson process

They are named after Siméon Denis Poisson (1781-1840), who introduced in his treatise
“Recherches sur la probabilité des jugements” in 1837, the Poisson distribution, which is
closely linked to Poisson processes.

Loosely speaking, Poisson processes come as follows:

One has random points on [0,∞), such that for any Borel set A of [0,∞),

(0.1) N(A)
def
= number of points falling in A

is distributed as a Poisson variable with parameter λ|A| (|A| = the Lebesgue measure
of A), λ > 0 some constant, that is

(0.2)
P [N(A) = k] = e−λ|A| (λ|A|)k

k!
, for k ∈ N = {0, 1, 2, . . . , }, if |A| <∞;

and N(A)
a.s.
= ∞, if |A| =∞.

0

random points

A
︷ ︸︸ ︷

Fig. 0.1

and for m ≥ 1 and A1, A2, . . . , Am pairwise disjoint Borel sets of [0,∞):

(0.3) N(A1), . . . , N(Am) are independent variables.

The Poisson process records the number of points falling in the interval [0, t], t ≥ 0:

(0.4) Nt
def
= N([0, t]), t ≥ 0.
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0 tS1 S2 S3 S4 S5

Fig. 0.2

Thus, it is a non-decreasing right-continuous function of t, which has jumps of size 1 at
the location of the random points, and remains otherwise constant between consecutive
jumps.

The Poisson process comes in many applications, for instance as a description of arrival
times of customers in a queue, of times at which telephone calls arrive at a call center, of
times at which claims arrive in an insurance company, of times of emission for α-particles
by a radioactive source, etc. ...

We will see different characterizations of the Poisson process. In particular if Si, i ≥ 1,
denote the successive jump times of Nt, t ≥ 0, (with S0 = 0, by convention), and Ti, i ≥ 1,
are the inter-arrival times:

(0.5) Ti = Si − Si−1, i ≥ 1,

we will see that

Ti, i ≥ 1, are independent exponential variables with parameter λ:(0.6)

P [Ti ∈ B] =

∫

B
λe−λxdx, for any Borel set B in [0,∞).(0.7)

This description makes the Poisson process a special (and important) example of another
topic of interest in this course:

0.2 Renewal processes

One now considers i.i.d. variables Ti, i ≥ 1, on [0,∞) with P [Ti = 0] < 1, and finite
expectation:

(0.8) µ = E[Ti], (for any i ≥ 1),

and one introduces the renewal times

Si = T1 + · · ·+ Ti, i ≥ 1,

S0 = 0 .
(0.9)
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The renewal process is now defined as

(0.10) Nt =
∑
i≥1

1{Si ≤ t}, for t ≥ 0.

It counts the number of renewal times in the interval [0, t].

0 tS1 S2 S3 S4 S5

Fig. 0.3

In view of (0.6), the renewal process is a generalization of the Poisson process. An im-
portant idea is that after a time Si, “things start again and develop in the same fashion”
(whence the terminology of “renewal times”):

(0.11) (NSi+t − i)t≥0 is distributed like (Nt)t≥0, and independent of T1, . . . , Ti.

In some cases we will discuss delayed renewal processes, for which S0 ≥ 0 is not necessarily
0, and is independent of the i.i.d. sequence (Ti)i≥1, so that

(0.12) Si = S0 + T1 + · · ·+ Ti, i ≥ 1.

Of typical interest will be the large t asymptotics of the renewal process. We will see
that under suitable assumptions on the distribution of the variables Ti, i ≥ 1 (namely
“non-arithmeticity”), one has Blackwell’s renewal theorem:

(0.13) lim
t→∞

E[Nt+h −Nt] =
h

µ
, for h > 0 (and µ as in (0.8)).

Another topic of interest will be the behavior of the “age” At and “excess” Et, when t is
a large deterministic time:

t

At Et

SNt SNt+1

Fig. 0.4

The renewal processes show up in a number of applications. They can for instance describe
the times of successive repairs of a machine, or of replacements of an electric component.
They are linked to the notion of “regeneration”, where things “start afresh” after certain
renewal times. Renewal processes also show up in our next topic of discussion:
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0.3 Markov chains

They are named after Andrei Markov (1856 - 1922), who introduced them. Typically,
one considers a state space E (in this course we assume that E is an at most countable
set). Then, a sequence (Xn)n≥0 of random variables with values in E, on some probability
space (Ω,A, P ), is a discrete time Markov chain when:

(0.14) E[f(Xn+1)|X0, . . . ,Xn]
P−a.s.
= E[f(Xn+1)|Xn],

for any bounded function f : E → R.

Intuitively: “The best prediction of the future of the sequence (Xn), knowing its past,
just relies on the knowledge of the present”. This informal statement reflects the fact
that when (0.14) holds, one can see that a similar statement holds as well with f(Xn+1)
replaced by g(Xn+1,Xn+2, . . . ,Xn+k), with k ≥ 1 arbitrary, and g bounded on Ek.

Of special interest for us will be the temporally homogeneous situation when:

(0.15)
P [Xn+1 = y|Xn = x] = px,y for any n ≥ 0, y ∈ E,

and x ∈ E with P [Xn = x] > 0,

where (px,y)x,y∈E is a (fixed) transition probability on E:

(0.16) px,y ≥ 0, for x, y ∈ E, and
∑
y∈E

px,y = 1, for all x ∈ E.

Markov chains show up in many situations. For instance, the state space can be E = Z

in the case of the simple random walk on Z:

Zxx− 1 x+ 1

px,x−1 =
1
2 px,x+1 =

1
2

px,y = 0, if y /∈ {x− 1, x+ 1}

Fig. 0.5

But E can also be of the form E = {1, . . . ,K}Λ, with Λ = {1, . . . , L}2 ⊆ Z2, the space
of “configurations of pixels” in a box Λ, so that x ∈ E can be thought of as an image
and K ≥ 2, represents the number of grey levels of the pixels. There are indeed many
examples of state spaces and Markov chains that one encounters in applications.

Typical questions concerning Markov chains have to do with their asymptotic behavior.
For instance one is interested in:
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- How does the distribution of Xn look like for large n?

- Is a state x ∈ E visited finitely many times or infinitely often by the chain (i.e. is
the variable

∑∞
n=0 1{Xn = x} finite or infinite)?

If the state x ∈ E is visited infinitely often by the chain, then the successive times of visit:

S0 = inf{n ≥ 0;Xn = x}, S1 = inf{n > S0;Xn = x}, . . .
Sk+1 = inf{n > Sk : Xn = x}, . . .

(0.17)

turn out to lead to a renewal process, possibly with delay (see (0.12)).

N0 S0 S1 S2 S3 S4

successive times when Xn = x

Fig. 0.6

An important role in the asymptotic analysis of the chain is played by the stationary
distributions, i.e. the probabilities π on E such that

(0.18)
∑
x∈E

π(x) px,y = π(y), for all y ∈ E,

and one is naturally led to study the existence and uniqueness of such distributions.

One does also study Markov chains in continuous time, (Xt)t≥0, where in place of
(0.14) one now requires that

(0.19) E[f(Xtn+1)|Xt0 ,Xt1 , . . . ,Xtn ] = E[f(Xtn+1)|Xtn ],

for any 0 ≤ t0 < t1 < · · · < tn < tn+1, and bounded f : E → R.

One is interested in very similar questions as in the case of Markov chains in discrete
time, and there are important links between the continuous time and the discrete time
situation.

0.4 Brownian motion

It is named after Robert Brown, who in 1828, at the time director of the British botanical
museum, discovered the disordered motion of pollen grains suspended in water.

One can construct Brownian motion as a limit of rescaled polygonal interpolations of
a simple random walk, somewhat in the same way as the normal distribution in the weak
limit of the distributions of rescaled sums of i.i.d. random signs (as a consequence of the
central limit theorem).
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, x

tt

St : polygonal interpolation
of the simple random walk

B
(n)
t : the rescaled trajectory

Fig. 0.7

X1, . . . ,Xn, . . . i.i.d. with P [Xi = ±1] = 1
2 , for all i ≥ 1,(0.20)

Sn = X1 + · · · +Xm, m ≥ 1, S0 = 0,

St, t ≥ 0, the polygonal interpolation of Sm,m ≥ 1,

and

B
(n)
t = 1

n Sn2t, t ≥ 0, the rescaled (time and space) trajectory, with n ≥ 1.(0.21)

The central limit theorem implies that

(0.22) P [B
(n)
1 ≤ a] −→

n→∞

1√
2π

∫ a

−∞
exp

{
− x2

2

}
dx, for all a ∈ R.

Much more is true, and in a sense which can be made precise, the whole trajectory B(n)
.

converges to a limit object B., the Brownian motion (this is a special case of Donsker’s
invariance principle).

Brownian motion turns out to be a fundamental stochastic process. The trajectories
t→ Bt(ω) are continuous, but very rough (nowhere differentiable, of infinite variation on
any proper interval). One can nevertheless build an “infinitesimal calculus” for Brownian
motion and show that when f is a C2 function on R:

(0.23) f(Bt) = f(B0) +

∫ t

0
f ′(Bs) dBs +

1

2

∫ t

0
f

′′
(Bs) ds, t ≥ 0, (Ito’s formula),

where
∫ t
0 f

′(Bs)dBs is a so-called “stochastic integral”, (t → Bt has infinite variation

on proper intervals and
∫ t
0 f

′(Bs)dBs has no meaning as a Stieltjes integral). Note the

surprising apparition of a term “1
2

∫ t
0 f

′′
(Bs)ds” in (0.23), which reflects the Brownian

trajectories.
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1 Poisson process

We begin with some general definitions before getting to the heart of the matter.

Definition 1.1. Given a probability space (Ω,A, P ), a set I 6= ∅, and a measurable space
(E, E), a stochastic process with time parameter III, and state space EEE, is a collection
(Xt)t∈I of random variables Xt on (Ω,A, P ) with values in E. For ω ∈ Ω, the application
t ∈ I → Xt(ω) is called trajectory, or realization, or sample path of the stochastic
process.

Typically, we will be interested in I = N(= {0, 1, 2, . . . }) or I = R+, and in (E, E) =
(R,B(R)), the Borel σ-algebra on R. If we do not explicitly specify the state space of the
stochastic process, it is tacitly assumed to be E = R (and E = B(R)).

0 1 3

Xt(ω1)

Xt(ω2)

Fig. 1.1: Two sample paths of a stochastic process with I = [1, 3]

Definition 1.2. A stochastic process (Yt)t≥0 defined on (Ω,A, P ) is said to have inde-

pendent increments, if for any k ≥ 1, 0 = t0 < t1 < · · · < tk,

(1.1) Yt1 − Yt0 , . . . , Ytk − Ytk−1
are independent.

The stochastic process (Yt)t≥0 is said to have stationary increments if for any k ≥ 1,
t0 = 0 < t1 < · · · < tk and h > 0, the random vectors:

(1.2) (Yt1 − Yt0 , . . . , Ytk − Ytk−1
) and (Yt1+h − Yt0+h, . . . , Ytk+h − Ytk−1+h)

have same distribution (on Rk).
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By a counting process, we mean a stochastic process (Nt)t≥0, such that the trajec-
tories

(1.3) t ≥ 0→ Nt(ω) are non-decreasing, right-continuous with values in N.

if y

S1(ω) S2(ω) S3(ω)

Fig. 1.2: A sample path of a counting process (for which N0 = 0)

Given a counting process (Nt)t≥0, one can define its successive jump times (Si)i≥1, via

S1(ω) = inf{t ≥ 0; Nt(ω) > N0(ω)} ≤ ∞,
(if the set {. . . } = ∅, then S1(ω) =∞), and inductively for k ≥ 1,

Sk+1(ω) = inf{t ≥ Sk(ω); Nt(ω) > NSk
(ω)}

(this is understood as ∞ if Sk(ω) =∞).

(1.4)

In this way one has

(1.5)





0 < S1(ω) ≤ S2(ω) ≤ · · · ≤ Sk(ω) ≤ . . . (each inequality is in fact strict

if the left member is finite),

lim
k
Sk(ω) =∞ (note that by (1.3), for any T > 0 and ω ∈ Ω,

SNT (ω)+1(ω) > T ).

We are now ready to prove some equivalent properties for a counting process, which will
then characterize the Poisson processes.
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Theorem 1.3. Consider λ > 0, and a counting process (Nt)t≥0, with N0 = 0 and jumps of
size 1 defined on some probability space (Ω,A, P ). The following properties are equivalent:

(Nt)t≥0 has independent and stationary increments, and as t→ 0,(1.6)

P [Nt = 1] = λt+ o(t),

P [Nt ≥ 2] = o(t);

(Nt)t≥0 has independent and stationary increments, and for all t ≥ 0,(1.7)

Nt has a Poisson(λt) distribution;

the successive jump times Si, i ≥ 1 (see (1.4)), are P -a.s. finite and(1.8)

the Ti = Si − Si−1, i ≥ 1 (where S0 = 0, by convention) are i.i.d.

exponentially(λ)-distributed variables;

for each t > 0, Nt has a Poisson(λt) distribution, and when k ≥ 1,(1.9)

conditional on Nt = k, the variables (S1, . . . , Sk) are distributed as the

non-decreasing reordering of k independent variables U1, . . . , Uk uniformly

distributed on [0, t], i.e. they admit the density (conditional on {Nt = k}):
f(s1, . . . , sk|Nt = k) = k!

1

tk
1{0 < s1 < · · · < sk < t}.

The above theorem allows to introduce the following definition:

Definition 1.4. A Poisson process with rate λ > 0 is a counting process (Nt)t≥0, with
N0 = 0, and jumps of size 1 satisfying one of the equivalent properties (1.6), (1.7), (1.8),
(1.9).

Proof of Theorem 1.3:

• (1.7) =⇒ (1.6):

This is easy because:

P [Nt = 1] = e−λtλt = λt+ o(t), as t→ 0, and

P [Nt ≥ 2] = 1− e−λt − e−λtλt = o(t), as t→ 0.

• (1.6) =⇒ (1.7):

Consider for t > 0 and n ≥ 1:

(1.10) Mn,t =
n∑

k=1

1{N kt
n
−N(k−1) t

n
≥ 1}.
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It follows from the independence and the stationarity of the increments of N. that

Mn,t is distributed as a binomial (n, P [N t
n
≥ 1]) variable.(1.11)

↑
the success probability

Moreover we have:

(1.12) nP [N t
n
≥ 1]

(1.6)
= n

(
λt

n
+ o

( t

n

))
−→
n→∞

λt.

From the usual Poisson approximation result for binomial (n, pn) variables with npn →
const., see for instance (2.2.5), p. 47 of [14], we find that

(1.13) Mn,t converges in law to a Poisson(λt) distribution as n→∞.

At the same time we know that

(1.14)

P [Nt 6=Mn,t] = P
[ n⋃
k=1

{
N kt

n
−N(k−1) t

n
≥ 2

}]
≤

n∑
k=1

P
[
N kt

n
−N(k−1) t

n
≥ 2

] (1.6)
= n o

( t

n

)
−→
n→∞

0.

This fact together with (1.13) implies that Nt is Poisson(λt)-distributed (indeed for f
bounded continuous on R:

|E[f(Nt)]−E[f(Mn,t)]| ≤ ‖f‖∞ P [Nt 6=Mn,t] −→
n→∞

0, and

E[f(Mn,t)]
(1.13)−→
n→∞

e−λt
∞∑
k=0

f(k)
(λt)k

k!
, so that

E[f(Nt)] = e−λt
∞∑
k=0

f(k)
(λt)k

k!
, for all f as above ).

This proves (1.7).

• (1.7) =⇒ (1.8):

We first give a non-rigorous heuristic argument:

P [T1 > t] = P [Nt = 0] = e−λt, so T1 is exponential (λ)-distributed.

P [T2 > t|T1 = s] “=” P [Nt+s −Ns = 0|Nu = 0, 0 ≤ u < s, Ns = 1]

“=” P [Nt+s −Ns = 0] = P [Nt = 0] = e−λt,
↑ ↑

independence

of increments

stationarity

of increments

so that T2 is independent of T1 and exponential (λ)-distributed, and so on.
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We now give a rigorous argument:

(1.15) P [T1 > t] = P [Nt = 0] = e−λt, for t > 0,

so that T1 < ∞, P -a.s., and T1 is exponential(λ)-distributed. Further, for 0 ≤ s1 ≤ t1 ≤
s2 ≤ t2, one has:

(1.16)

P [s1 < S1 ≤ t1, s2 < S2 ≤ t2] =
P [Ns1 = 0, Nt1 −Ns1 = 1, Ns2 −Nt1 = 0, Nt2 −Ns2 ≥ 1] =

using independence and stationarity of increments

e−λs1 × λ(t1 − s1) e−λ(t1−s1) × e−λ(s2−t1) ×
(
1− e−λ(t2−s2)

)
=

λ(t1 − s1)(e−λs2 − e−λt2) =

∫
{s1 < y1 ≤ t1,
s2 < y2 ≤ t2}

λ2 e−λy2dy1dy2 .

In the same way we have

P [s1 < S1 ≤ t1, s2 < S2] = λ(t1 − s1) e−λs2 −→
s2→∞

0, and hence

P [s1 < S1 ≤ t1, S2 =∞] = 0 .

Choosing s1 = 0, and letting t1 →∞, we find that P [0 < S1 <∞, S2 =∞] = 0, and from
(1.15) and the first line of (1.5), we know that P [0 < S1 <∞, S1 < S2] = 1. Therefore:

(1.17) P [0 < S1 < S2 <∞] = 1 .

If we now introduce the probability density on R2
+:

(1.18) f(y1, y2) = λ2 e−λy21{0 < y1 < y2},

we deduce from (1.16) that

(1.19) P [(S1, S2) ∈ A] =
∫

A
f(y1, y2) dy1dy2 for A ∈ B(R2

+),

(the class of sets A = (s1, t1]× (s2, t2], with 0 ≤ s1 ≤ t1 ≤ s2 ≤ t2 is a π-system of subsets
of U = {(x, y); 0 < x < y < ∞}, which generates B(U). One can then apply Dynkin’s
lemma, cf. [12], p. 41, noting that both f dy1dy2 and the law of S1, S2 are supported by
U , cf. (1.17), (1.18)).

By an analogous argument, we obtain that for k ≥ 1, Sk <∞, P -a.s. and

(1.20)
f(S1,...,Sk)(y1, . . . , yk) = λk e−λyk1{0 < y1 < · · · < yk}
is the density of (S1, . . . , Sk).

Denote with h the linear map on Rk:

(1.21) h(t1, . . . , tk) = (t1, t1 + t2, . . . , t1 + · · ·+ tk),

11



and with µk the product measure on Rk:

(1.22) µk(dt1, . . . , dtk) =
k∏

i=1

λe−λti1{ti > 0} dt1 . . . dtk .

The image of µk under h (which has determinant 1) admits the density λk e−λyk1{0 <
y1 < y2 < · · · < yk} of (1.20). Looking at inter-arrival times, this proves that

(T1, T2, . . . , Tk) = (S1, S2 − S1, . . . , Sk − Sk−1)

= h−1(S1, . . . , Sk) is µk-distributed,
(1.23)

and (1.8) follows.

• (1.8) =⇒ (1.9):

If g(t) = λ e−λt1{t > 0}, then S2 = T1 + T2 admits the density:

g ∗ g(t) =
∫ t

0
λ e−λ(t−s)λe−λsds = λ2 t e−λt, when t > 0,

= 0, when t ≤ 0,

(1.24)

and by induction Sk+1 admits the density

g∗(k+1)(t) = g ∗ g∗(k)(t) =

∫ t

0
λ e−λ(t−s) λk

sk−1

(k − 1)!
e−λsds

= λk+1 tk

k!
e−λt, if t > 0,

= 0, if t ≤ 0.

In other words, for each k ≥ 1:

(1.25) λk
sk−1

(k − 1)!
e−λs1{s > 0} is the density of Sk,

(i.e. Sk is Gamma(k, λ)-distributed, where the general Gamma(ν, λ)-density, ν, λ > 0,
cf. [6], p. 47, is defined by fλ,ν(s) =

1
Γ(ν)λ

νsν−1e−λs1{s > 0}).
In particular, we see that

(1.26)

i) P [Nt = 0] = P [S1 > t]
(1.25)
= e−λt

ii) P [Nt = k] = P [Sk ≤ t, Sk+1 > t] = P [Sk ≤ t]− P [Sk+1 ≤ t]
(1.25)
=

∫ t

0
λe−λs (λs)k−1

(k − 1)!
ds −

∫ t

0
λe−λs (λs)k

k!
ds

︸ ︷︷ ︸
integrating by parts, this equals

e−λt (λt)
k

k!
−

∫ t

0
λe−λs (λs)k−1

(k − 1)!
ds

= e−λt (λt)
k

k!
, for k ≥ 1.
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This shows that

(1.27) Nt is Poisson (λt)-distributed.

If h is as in (1.21), (S1, . . . , Sk) = h(T1, . . . , Tk), when k ≥ 1, as explained below (1.22)
has density λk e−λsk1{0 < s1 < · · · < sk}. Applying this observation with k + 1 in place
of k we find that λk+1e−λsk+11{0 < s1 < s2 < · · · < sk+1} is the density of (S1, . . . , Sk+1).
Thus as in (1.26) ii), we see that the function of s1, . . . , sk+1 defined by

f(s1, . . . , sk+1 |Nt = k) =
λk+1

P [Nt = k]
e−λsk+1 1{0 < s1 < · · · < sk+1}

1{sk ≤ t < sk+1}
(1.27)
= λe−λsk+1

eλtk!

tk
1{0 < s1 < · · · < sk ≤ t < sk+1}

(1.28)

is the density of (S1, . . . , Sk+1) conditional on {Nt = k}. As a result, the density of
(S1, . . . , Sk) conditional on {Nt = k} is

(1.29)

f(s1, . . . , sk|Nt = k) =

∫ ∞

t
f(s1, . . . , sk, sk+1|Nt = k) dsk+1 =

k!

tk
1{0 < s1 < · · · < sk ≤ t}

∫ ∞

t
λe−λ(s−t)ds =

k!

tk
1{0 < s1 < · · · < sk ≤ t},

which is the density of the non-decreasing reordering of U1, U2, . . . , Uk i.i.d. uniformly
distributed variables on [0, t] (see also [12], p. 323). This completes the proof of (1.9).

• (1.9) =⇒ (1.7):

We will use the following lemma:

Lemma 1.5. Consider λ1, . . . , λn > 0, λ =
∑n

i=1 λi, pi =
λi

λ , 1 ≤ i ≤ n. Given N-valued
random variables Z1, . . . , Zn and Z = Z1+· · ·+Zn, the following properties are equivalent:

Z1, . . . , Zn are independent, respectively Poisson(λi)-distributed, 1 ≤ i ≤ n,(1.30)

Z is Poisson(λ)-distributed and for any k ≥ 1, conditional on Z = k,(1.31)

(Z1, . . . , Zn) is multinomial (k; p1, . . . , pn)-distributed, that is:

P [Z1 = j1, . . . , Zn = jn|Z = k] =
k!

j1! . . . jn!
pj11 . . . p

jn
n ,

for 0 ≤ j1, . . . , jn with j1 + · · ·+ jn = k.

Proof of Lemma 1.5:

• (1.30) =⇒ (1.31):

P [Z1 = j1, . . . , Zn = jn] = e−λ1
λj11
j1!

. . . e−λn
λjnn
jn!

, for j1, . . . , jn ≥ 0

= e−λ λ
j1
1 . . . λjnn
j1! . . . jn!

.

(1.32)

13



Then we have for k ≥ 0:

P [Z = k] = e−λ ∑
j1+···+jn=k

λj11 . . . λjnn
j1! . . . jn!

=
e−λ

k!
(λ1 + · · ·+ λn)

k = e−λ λ
k

k!
.(1.33)

↑
multiplying and dividing by k! and
using the multinomial formula

So Z is Poisson(λ)-distributed.

Moreover, for k ≥ 1, j1, . . . , jn ≥ 0 with j1 + · · ·+ jn = k we find

P [Z1 = j1, . . . , Zn = jn|Z = k]
(1.32)−(1.33)

=
k!

j1! . . . jn!

(λ1
λ

)j1
. . .

(λn
λ

)jn

and this proves (1.31), since λi

λ = pi, 1 ≤ i ≤ n.

• (1.31) =⇒ (1.30):

For j1, . . . , jn ≥ 0, with k = j1 + · · ·+ jn ≥ 1, we have:

P [Z1 = j1, . . . , Zn = jn] = P [Z1 = j1, . . . , Zn = jn|Z = k] P [Z = k]

=
( k!

j1! . . . jn!
pj11 . . . p

jn
n

)(
e−λ λ

k

k!

)
= e−λ1+···+λn

λj1+···+jn

j1! . . . jn!

(λ1
λ

)j1
. . .

(λn
λ

)jn

=
n∏

i=1

e−λi
λjii
ji!

.

Now, when j1 = · · · = jn = 0, P [Z1 = · · · = Zn = 0] = P [Z = 0] = e−λ = e−λ1 . . . e−λn ,
and (1.30) follows. �

We will now prove (1.7) assuming (1.9). Observe that when n, k ≥ 1, 0 < t1 <
t2 < · · · < tn = t, j1, . . . , jn ≥ 0, with k = j1 + · · ·+ jn,

ւ
=t

P [Nt1 = j1, Nt2 −Nt1 = j2, . . . , Ntn −Ntn−1 = jn|Nt = k]
(1.9)
=

with U1, . . . , Uk uniformly distributed on [0, t] and independent

P
[ k∑
i=1

1{Ui ∈ [0, t1]} = j1,
k∑

i=1
1{Ui ∈ (t1, t2]} = j2, . . . ,

k∑
i=1

1{Ui ∈ (tn−1, t]} = jn

]
=

k!

j1! . . . jn!

(t1
t

)j1(t2 − t1
t

)j2
. . .

( t− tn−1

t

)jn
,

that is Nt1 , Nt2 − Nt1 , . . . , Nt − Ntn−1 conditional on Nt = k are multinomial (k; t1t ,
t2−t1

t , . . . , t−tn−1

t )-distributed. With Lemma 1.5 we see that Nt1 , Nt2 − Nt1 , . . . , Nt −
Ntn−1 are independent and respectively Poisson(λt1), Poisson(λ(t2−t1)), . . . , Poisson(λ(t−
tn−1))-distributed. This proves (1.7) and concludes the proof of Theorem 1.3. �
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Remark 1.6. One can prove a variant of Theorem 1.3, for which one does not make any
assumption on the jumps of a counting process (Nt)t≥0, such that N0 = 0. In this set-up
one has

(1.6) ⇐⇒ (1.7) ⇐⇒ (1.8)’ ⇐⇒ (1.9)’, where
(1.8)’ is the condition (1.8) and P -a.s. the jumps of (Nt) have size 1, and
(1.9)’ is the condition (1.9) and P -a.s. the jumps of (Nt) have size 1.

The only change in the proof given above concerns the step (1.7) =⇒ (1.8)’, where one
argues as for (1.7) =⇒ (1.8) and one also observes that for t > 0

P
[
N. has a jump of size ≥ 2 on [0, t]

]
≤

ւ
see (1.7) =⇒ (1.6)

P
[ n⋃
k=1

{
Nk t

n
−N(k−1) t

n
≥ 2

}]
≤ nP [N t

n
≥ 2] = n o

(
1

n

)
−→
n→∞

0,

and hence P [N. has a jump of size ≥ 2] = 0, which allows to prove (1.8)’. �

We will now discuss some properties of the Poisson process. We begin with the fact
that it satisfies the Markov property (more about this topic in Chapter 4).

Proposition 1.7. (time-homogeneous Markov property)

Consider (Nt)t≥0 a Poisson process with rate λ > 0, f : N → R, bounded, 0 = t0 < t1 <
· · · < tℓ = t, s ≥ 0. Then, one has

(1.34) E[f(Nt+s) |Nt0 , . . . , Ntℓ ] = (Rs f)(Nt), P-a.s.,

where for n ≥ 0 and u ≥ 0,

(1.35) (Ruf)(n) =
∑
m≥n

f(m) e−λu (λu)m−n

(m− n)! (= E[f(Nu + n)]).

Moreover,

(1.36)
(Ru)u≥0 is a semigroup of bounded operators on L∞(N),
(i.e. Ru+v = RuRv for u, v ≥ 0).

Proof.

E[f(Nt+s)|Nt0 , . . . , Ntℓ ] = E
[
f(Nt+s −Nt︸ ︷︷ ︸+Nt) |Nt0 , . . . , Ntℓ

] P -a.s.
=

տ ↑ ↑ ր︸ ︷︷ ︸տ ր
independent from

∑
k≥0

f(k +Nt) e
−λs (λs)k

k!
= (Rsf)(Nt),

15



and (1.34) follows. Note that for s1, s2 ≥ 0, n ≥ 0, and f as above:

(1.37)

Rs1(Rs2f)(n) = Rs1

( ∑
m2≥ ·

f(m2) e
−λs2

(λs2)
m2−·

(m2 − ·)!
)
(n) =

e−λs1
∑

m1≥n

(λs1)
m1−n

(m1 − n)!
∑

m2≥m1

f(m2) e
−λs2

(λs2)
m2−m1

(m2 −m1)!
=

e−λ(s1+s2)
∑

m2≥m1≥n
f(m2)

(λs1)
(m1−n)

(m1 − n)!
(λs2)

(m2−m1)

(m2 −m1)!

summing over m1
=

binomial formula

e−λ(s1+s2)
∑

m2≥n
f(m2)

(
λ(s1 + s2)

)m2−n

(m2 − n)!
= Rs1+s2 f(n),

and this proves (1.36).

Remark 1.8. Note that for t > 0, n ≥ 0, and f bounded on N we have

(1.38)
1

t
(Rtf − f)(n) =

1

t
(e−λt − 1) f(n) + λe−λtf(n+ 1) +

∑
k≥2

e−λt

t

(λt)k

k!
f(n+ k).

As a result, letting t→ 0, only the first two terms in the right-hand side of (1.38) contribute
and we find:

(1.39) lim
t→0

1

t
(Rtf − f)(n) = Lf(n) (the convergence is uniform in n)

where

(1.40) Lf(n) = λ
(
f(n+ 1)− f(n)

)
, for n ≥ 0,

is a bounded operator on L∞(N) called the generator of the semigroup (Rt)t≥0. �

1.1 Stationary Poisson process on R

We consider (N+
t )t≥0 and (N−

t )t≥0, two independent Poisson processes with rate λ, with
respective jump times (S+

i )i≥1, (S
−
i )i≥1. We organize these two sequences into a doubly

infinite sequence on R, (Sk)k∈Z:

16



0−S−
1−S−

2−S−
3 S+

1 S+
2 S+

3

S−2 S−1 S0 S1 S2 S3

R

Fig. 1.3

(1.41)
Sk = S+

k , if k ≥ 1,

= −S−
1+|k|, if k ≤ 0.

As a result we see that the distribution of the (Sk)k∈Z is determined by the property

(1.42)
S1, S2 − S1, . . . , Sk+1 − Sk, . . .
−S0, S0 − S−1, S−1 − S−2, . . . are i.i.d. exponentially(λ)-distributed.

Of course the origin 0 plays a special role for the sequence (Sk)k∈Z since one has:

(1.43) S0 < 0 < S1 .

We then choose t > 0 (the case t < 0 is similar) and let t play the role of the new origin
of time for the doubly infinite sequence. So we define

random

0

0

tS−1 S0 S1 S2

S̃−2 S̃−1 S̃0 S̃1

Fig. 1.4

(1.44) S̃k = SN+
t +k − t, k ∈ Z .

Theorem 1.9. (stationarity)

(1.45) (S̃k)k∈Z has the same distribution as (Sk)k∈Z.

17



Proof. We use the notation N+
u−

def
= limv↑uN

+
v , for u > 0, to denote the left-limit of N+

.

at u (it only differs from N+
u when u is a jump time of N+

. ). We then define the counting
processes:

Ñ+
s

def
= N+

t+s −N+
t , s ≥ 0,(1.46)

Ñ−
s

def
= N+

t −N+
(t−s)−, if 0 ≤ s < t0 ≤ s < t0 ≤ s < t,

def
= N−

s−t +N+
t , if s ≥ ts ≥ ts ≥ t.(1.47)

Note that Ñ+
0 = 0, but Ñ−

0 = 1 possibly, when t is a jump time of N+
. (this event has

probability 0, cf. (1.25)). When t is not a jump time of N+
. , we have:

S̃k, k ≥ 1, are the jump times of (Ñ+
. ), and

−S̃1−k, k ≥ 1, are the jump times of (Ñ−
. ).

(1.48)

Moreover, (Ñ+
. ) and (Ñ−

. ) have independent stationary increments and both Ñ+
s , Ñ−

s are

Poisson(λs)-distributed (note that for each s ∈ [0, t), P -a.s., Ñ−
s = N+

t − N+
t−s, since for

each u ≥ 0, P [N+
u 6= N+

u−] = 0). Also N+
. and N−

. are independent. With (1.7) we see

that (Ñ+
s )s≥0 and (Ñ−

s 1{Ñ−
0 = 0})s≥0 are two independent Poisson processes with rate

λ > 0 (of course P [Ñ−
0 6= 0] = P [t is a jump time of N+

. ] = 0). From (1.41) and (1.48) we
have expressed

(Sk)k∈Z
(1.41)
= g

(
(S+

i )i≥1, (S
−
i )i≥1

)
, and P -a.s. (S̃k)k∈Z

(1.48)
= g

(
(S̃+

i )i≥1, (S̃
−
i )i≥1

)
,

with S̃+
i , i ≥ 1, the jump times of Ñ+

. , S̃
−
i , i ≥ 1, the jump times of Ñ−

. 1{Ñ−
0 = 0}. The

claim (1.45) follows.

We will now apply our discussion of the stationary Poisson process on R to the so-called
age and excess processes.

We thus consider (Ns)s≥0 a Poisson process with rate λ > 0, and for t ≥ 0 we introduce
(with the convention S0 = 0 used for unilateral Poisson processes, cf. (1.8))

(1.49)
At = t− SNt (age process), note that At = t, when Nt = 0,

Et = SNt+1 − t (excess process).

Xn

0 tSNt SNt+1

At Et

Fig. 1.5: An illustration of At and Et
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Proposition 1.10. (t > 0, (Ns)s≥0 Poisson process with rate λ)

(At, Et) has same distribution as (U ∧ t, V ), where U, V are(1.50)

independent exponential(λ)-distributed random variables.

Proof. If we choose an independent Poisson process with rate λ, (N−
s )s≥0, and set N+

s =
Ns, for s ≥ 0, we see that in the notation of (1.44) we have:

(1.51) Et = S̃1 and At = (−S̃0) ∧ t,

and the claim follows from (1.45) of Theorem 1.9 and (1.42).

Remark 1.11. The above result has an important consequence. It shows that the length
of the interval between successive jump times, which straddles ttt (i.e. Lt = Et + At)
has not the same distribution as the Ti, i ≥ 1 (the lengths between the successive jump
times). This length tends to be longer, cf. [6], p. 12: “The waiting time paradox”.
Note that for t→∞:

lim
t→∞

E[Lt] = E[U ] + E[V ] = 2E[Ti] =
2

λ
.

�

1.2 Superposition and thinning of Poisson processes

We will now discuss some natural “operations” on Poisson processes. It will be useful to
introduce the notion of “marking” of a Poisson process.

Definition 1.12. Given a Poisson process (Nt)t≥0, with rate λ > 0, an i.i.d. sequence
(Xn)n≥1 (possibly vector-valued), independent of (Nt)t≥0, will be called a marking of the
Poisson process.

Rd

t

S1 S2 S3 S4

(S1,X1)

(S2,X2)

(S3,X3)

(S4,X4)

Fig. 1.6: A marked Poisson process

19



1.2.1 Thinning

We consider a Poisson process with rate λ > 0, (Nt)t≥0, marked with Bernoulli variables
(Xn)n≥1, with success parameter p ∈ (0, 1). We define the thinned processes:

N1
t =

∑
k≥1

1{Sk ≤ t,Xk = 1}, t ≥ 0,

N0
t =

∑
k≥1

1{Sk ≤ t,Xk = 0}, t ≥ 0.
(1.52)

Remark 1.13.

1) The Poisson process (Nt)t≥0 can for instance describe the arrival times in a queue of
clients, which can have two types “1” or “0”. So the thinned processes (N1

t )t≥0 and
(N0

t )t≥0 respectively describe the arrival times of clients of type 1 and of clients of
type 0 in the queue.

2) Another interpretation of (N1
t )t≥0 is for instance when certain arrivals or events are

not registered due to some defects (with the mark being 0 for such arrivals).

3) We of course have the identity

(1.53) Nt = N0
t +N1

t , t ≥ 0.

�

The next proposition will be very useful.

Proposition 1.14. Assume (Nt)t≥0 is a Poisson process with rate λ > 0, with Rd-valued
marks (Xn)n≥1, with common law µ on (Rd,B(Rd)). For A ∈ B(R+ × Rd), with A ⊆
[0, T ]× Rd, for some T > 0, define

(1.54) N(A) =
∑
k≥1

1{(Sk,Xk) ∈ A}.

Then, setting ν(ds, dx) = λ 1{s > 0}ds ⊗ µ(dx),

(1.55) N(A) is Poisson
(
ν(A)

)
-distributed,

and for A1, . . . , Am ∈ B(R+ × Rd), pairwise disjoint (i.e. Ai ∩ Aj = φ, for i 6= j) and
included in [0, T ]× Rd, for some T > 0,

(1.56) N(A1), . . . , N(Am) are independent variables.

Proof. We will compute the characteristic function of (N(A1), . . . , N(Am)). We thus con-
sider t1, . . . , tm ∈ R, A1, . . . , Am as above and set

(1.57) f(s, x) =
m∑
j=1

tj 1Aj
(s, x), for s ≥ 0, x ∈ Rd.
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The characteristic function of the random vector (N(A1), . . . , N(Am)) is:

(1.58)

ϕ(t1, . . . , tm) = E
[
exp

{
i

m∑
j=1

tj N(Aj)
}]

(1.54),(1.57)
= E

[
exp

{
i
∑
n≥1

f(Sn,Xn)
}]
.

By (1.9) we know that NT is Poisson(λT ) and conditional on Nt = k, k ≥ 1, S1, . . . , Sk
are obtained as a reordering of U1, . . . , Uk, independent uniformly distributed variables on
[0, T ].

As a result we find that:

ϕ(t1, . . . , tm) = e−λT ∑
k≥0

(λT )k

k!
E
[
exp

{
i
∑
n≥1

f(Sn,Xn)
}∣∣NT = k

]
(1.59)

with (1.9) and the independence of the i.i.d. (Xn)n≥1:

= e−λT ∑
k≥0

(λT )k

k!

1

T k

∫

([0,T ]×Rd)k
e
i

k∑
n=1

f(un,xn)
du1 dµ(x1) . . . duk dµ(xk)

= e−λT ∑
k≥0

λk

k!

( ∫

[0,T ]×Rd

eif(u,x)du dµ(x)
)k

= exp
{
− λ

∫

[0,T ]×Rd

(1− eif(u,x)) du dµ(x)
}
.

Note that

1− eif = 0 outside
m⋃
j=1

Aj
տ pairwise disjoint

= 1− eitj on Aj .

In other words:

1− eif =
m∑
j=1

(1− eitj ) 1Aj
,

and as a result coming back to (1.59), we find that

ϕ(t1, . . . , tm) = exp
{
−

m∑
j=1

(1− eitj ) ν(Aj)
}

=
m∏
j=1

exp{−ν(Aj)(1− eitj )}︸ ︷︷ ︸
characteristic function of a

Poisson(ν(Aj))-variable at the point tj

.(1.60)

With the inversion formula for characteristic functions (cf. [4], p. 150), (1.55), (1.56)
follow.
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We will now apply the above proposition to the study of the thinning of Poisson
processes. We recall (1.52) for notation.

Theorem 1.15. (thinning of Poisson processes)

(N0
t )t≥0 and (N1

t )t≥0 are independent Poisson processes with respective rates

(1.61) λ0 = λ(1− p), λ1 = λp.

Proof. In view of (1.52), (N1
t )t≥0 and (N0

t )t≥0 are counting processes with jumps of size 1,
moreover one has N1

t=0 = 0 = N0
t=0. Further given t0 = 0 < t1 < · · · < tn, in the notation

of (1.54) we have

N1
t1 = N([0, t1]× {1}), N1

t2 −N1
t1 = N

(
(t1, t2]× {1}

)
, . . . , N1

tn −N1
tn−1

=

N
(
(tn−1, tn]× {1}

)
and

N0
t1 = N([0, t1]× {0}), N0

t2 −N0
t1 = N

(
(t1, t2]× {0}

)
, . . . , N0

tn −N0
tn−1

=

N
(
(tn−1, tn]× {0}

)
.

(1.62)

As a result of (1.55), (1.56) these are independent Poisson variables, and the respec-
tive parameters are given as in (1.55) with ν(ds, dx) = λ1{s > 0}ds ⊗ (pδ1(dx) + (1 −
p) δ0(dx)), so that N1

t1 is Poisson(λpt1), N
1
t2 −N1

t1 is Poisson(λp(t2− t1)), . . . , N1
tn −N1

tn−1

is Poisson(λp(tn − tn−1)).

LikewiseN0
t1 is Poisson(λ(1−p)t1), N0

t2−N0
t1 is Poisson(λ(1−p)(t2−t1)), . . . , N0

tn−N0
tn−1

is Poisson(λ(1 − p)(tn − tn−1)).

Therefore by Theorem 1.3 (N1
s )s≥0, (N

0
s )s≥0 are independent Poisson processes with

respective rates λ1 = λp, λ0 = λ(1− p).

Our next item is the discussion of the superposition of Poisson processes.

1.2.2 Superposition

We now consider (N0
t )t≥0 and (N1

t )t≥0 two independent Poisson processes with respective
rates λ0 > 0 and λ1 > 0, and the superposition process:

(1.63) Nt = N0
t +N1

t , t ≥ 0.

We denote by S0
k, k ≥ 1, and S1

k, k ≥ 1, the respective jump times of (N0
t )t≥0 and (N1

t )t≥0.
In view of (1.25) we see that

(1.64) P -a.s., for k0, k1 ≥ 1, S0
k0
6= S1

k1
and are both finite.

We can then introduce the successive jump times Sk, k ≥ 1, for Nt, t ≥ 0, and note that:

(1.65)

{Sk(ω), k ≥ 1} = {S0
k0
(ω); k0 ≥ 1} ∪ {S1

k1
(ω); k1 ≥ 1}.

տ ր

P -a.s. disjoint subsets in (0,∞)
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We then introduce the random variables Xk, k ≥ 1, via:

(1.66)

Xk(ω) = 1{the k-th jump time of (Nt)t≥0 is finite
and a jump time of (N1

t )t≥0}
def
= gk

(
(N1

t )t≥0, (N
0
t )t≥0

)
.

In view of (1.64),

P -a.s., 1−Xk(ω) = 1{the k-th jump time of (Nt)t≥0 is finite

and a jump time of (N0
t )t≥0}.

Theorem 1.16. (superposition of Poisson processes)

(Nt)t≥0 is (up to a change on a negligible set) a Poisson process with rate λ = λ0 + λ1,
and (Xk)k≥1 constitute a marking of this Poisson process with Bernoulli variables having
success probability

(1.67) p =
λ1

λ0 + λ1
.

Proof. We will use the result on thinning. We thus introduce on some auxiliary probability
space (Ω̃, Ã, P̃ ) a Poisson process (Ñt)t≥0 with rate λ = λ0 + λ1, and independent marks

(X̃k)k≥1, which are Bernoulli(p)-distributed, where p = λ1
λ0+λ1

, as in (1.67). If we denote

with (Ñ1
t )t≥0 and (Ñ0

t )t≥0, the thinned processes, cf. (1.52), we know from Theorem

1.15, that (Ñ0
t )t≥0 and (Ñ1

t )t≥0 are independent Poisson processes with respective rates
(λ0 + λ1)(1 − p) = λ0 and (λ0 + λ1) p = λ1. In particular:

(1.68)
(
(Ñ0

t )t≥0, (Ñ
1
t )t≥0

)
has same distribution as

(
(N0

t )t≥0, (N
1
t )t≥0

)
.

As a result:

(Ñt)t≥0 = (Ñ0
t + Ñ1

t )t≥0 has same distribution as (Nt)t≥0 = (N0
t +N1)t≥0,

and since Ñt is a Poisson process with parameter λ0 + λ1, we already find that

(1.69) (Nt)t≥0 is a Poisson process with rate λ = λ0 + λ1.

With the same notation as in (1.66), it also follows from (1.68) that

(1.70)

(
(Ñ0

t )t≥0, (Ñ
1
t )t≥0,

(
gk
(
(Ñ1

t )t≥0, (Ñ
0
t )t≥0

))
k≥1

)
has same distribution as

(
(N0

t )t≥0, (N
1
t )t≥0, (Xk)k≥1).

However, for k ≥ 1,

gk
(
(Ñ1

t )t≥0, (Ñ
0
t )t≥0) = 1

{
the k-th jump of (Ñ0

t + Ñ1
t )t≥0 = (Ñt)t≥0

is finite and a jump of (Ñ1
t )t≥0

}

(1.52)
= X̃k.
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As a result: (
(N0

t )t≥0, (N
1
t )t≥0, (Xk)k≥1

)
has same distribution as

(
(Ñ0

t )t≥0, (Ñ
1
t )t≥0, (X̃k)k≥1

)
,

and therefore since (Nt)t≥0 = (N0
t +N1

t )t≥0, (Ñt)t≥0 = (Ñ0
t + Ñ1

t )t≥0, we see that

(1.71)
(
(Nt)t≥0, (Xk)k≥1

)
has same distribution as

(
(Ñt)t≥0, (X̃k)k≥1

)
.

This proves that (Xk)k≥1 is a marking of (Nt)t≥0, which is Bernoulli(p)-distributed.

Remark 1.17. We have in several instances invoked the notion of distribution of a count-
ing process (Nt)t≥0. What is meant is that we consider the canonical space

Ωc = {functions w(·) from R+ into N, which are non-decreasing and(1.72)

right-continuous},

endowed with the canonical σ-algebra Fc generated by the canonical coordinates w ∈
Ωc → w(t) ∈ N, where t varies over R+:

(1.73) Fc = σ(w(t); t ≥ 0).

A counting process (Nt)t≥0 defined on (Ω,A, P ) can then be viewed as a random variable
with values in Ωc, endowed with the σ-algebra Fc, and the distribution of (Nt)t≥0 is simply
the image measure of P under the measurable map ω → (Nt(ω))t≥0 from (Ω,A) to (Ω,Fc).

In the same vein, the distribution of ((Ñ0
t )t≥0, (Ñ

1
t )t≥0) in (1.68), is the image measure

of P̃ on Ωc ×Ωc endowed with the product σ-algebra Fc ⊗Fc under the measurable map
ω̃ ∈ Ω̃→ ((Ñ0

t (ω̃))t≥0, (Ñ
1
t (ω̃))t≥0) ∈ Ωc × Ωc, and so on and so forth. �

1.3 Inhomogeneous Poisson process

Definition 1.18. Given a continuous function ρ: R+ → (0,∞), a counting process
(Nt)t≥0, with N0 = 0, and jumps of size 1, is called inhomogeneous Poisson process with
(instantaneous) rate ρ(t), if (Nt)t≥0 has independent increments and uniformly for bounded
t, as h→ 0:

P [Nt+h −Nt = 1] = ρ(t)h+ o(h),(1.74)

P [Nt+h −Nt ≥ 2] = o(h).(1.75)

(This generalizes (1.6), which pertains to Poisson processes with constant rates).

We will first discuss the existence of such processes.
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1.3.1 Construction via time change

We introduce the function

(1.76) R(t) =

∫ t

0
ρ(s) ds, t ≥ 0,

and consider (Ñt)t≥0 a Poisson process with rate λ = 1.

Proposition 1.19.

(1.77) Nt
def
= ÑR(t), t ≥ 0, is an inhomogeneous Poisson process with rate ρ(t).

Proof. Observe that (Nt)t≥0 has independent increments, since (Ñs)s≥0 also has indepen-
dent increments. Moreover, as h→ 0, uniformly for t ≤ T , one has:

P [Nt+h −Nt = 1] = P [ ÑR(t+h) − ÑR(t)︸ ︷︷ ︸
= 1](1.78)

տ
Poisson (R(t+ h)−R(t))

=
(
R(t+ h)−R(t)

)
e−(R(t+h)−R(t))

=
( ∫ t+h

t
ρ(u)du

)
exp

{
−

∫ t+h

t
ρ(u) du

}
= ρ(t)h+ o(h) .

In a similar fashion, as h→ 0, uniformly for t ≤ T ,

P [Nt+h −Nt ≥ 2] = P [ÑR(t+h) − ÑR(t) ≥ 2] =(1.79)

P [ÑR(t+h)−R(t)︸ ︷︷ ︸
≤CT h

≥ 2] ≤ P [ÑCT h ≥ 2] = o(h).

տ
with CT = sup{ρ(s); 0 ≤ s ≤ T + 1} <∞, and h ≤ 1

This proves the proposition.

When the function ρ(·) is bounded, we now provide another way to construct an
inhomogeneous Poisson process with rate ρ(·).

1.3.2 Construction by variable thinning

We now assume in addition that

(1.80) sup
t≥0

ρ(t) ≤ C <∞ .
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We consider (Ñt)t≥0 a Poisson process with rate C, which is marked by i.i.d. variables

(X̃n)n≥1, uniformly distributed on [0, 1]. We can then introduce (Nt)t≥0, which is a vari-

able thinning of (Ñt)t≥0:

Nt =
∑
k≥1

1{S̃k ≤ t, X̃k ≤ ρ(S̃k)

C

}
(compare with (1.52)),

with S̃k, k ≥ 1 the jump times of Ñ. .

(1.81)

Proposition 1.20.

(1.82) (Nt)t≥0 is an inhomogeneous Poisson process with rate ρ(t).

Proof. Define as in (1.55) for A ∈ B(R+ × Rd) with A ⊆ [0, T ]× Rd, for some T > 0:

(1.83) Ñ(A) =
∑
k≥1

1{(S̃k, X̃k) ∈ A}.

Then we have

(1.84) Nt = Ñ(A), with A =
{
(s, x) ∈ [0, t]× [0, 1]; 0 ≤ x ≤ ρ(s)

C

}
,

and as a result of (1.55), where ν(ds, dx) = C 1{s > 0, 0 ≤ x ≤ 1} ds dx, we find:

(1.85) Nt is Poisson
(
C

∫ t

0
ds

∫ 1

0
1
{
0 ≤ x ≤ ρ(s)

C

}
dx = R(t)

)
.

In the same way Nt+h −Nt is Poisson(R(t+ h)−R(t))-distributed, and with (1.56):

(1.86) (Nt)t≥0 has independent increments.

The claim now follows just as in (1.78), (1.79).

t
0

1

ρ(·)
C

(S̃1, X̃1)

(S̃2, X̃2)
(S̃3, X̃3)

(S̃4, X̃4)

(S̃5, X̃5)

(S̃6, X̃6)

Fig. 1.7: The jump times (Sk)k≥1 of (Nt)t≥0 obtained by variable

thinning of the jump times of (Ñt)t≥0
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We now return to the Definition 1.18 and investigate the structure of Poisson processes
with rate ρ(·).

Theorem 1.21. Let (Nt)t≥0 be a Poisson process with rate ρ(·), then

Nt −Ns is Poisson (R(t)−R(s))-distributed for 0 ≤ s < t,(1.87)

for t > 0 and k ≥ 1, given {Nt = k}, the distribution of (S1, . . . Sk) is(1.88)

µ(ds1 . . . dsk) = k! ρ(s1) . . . ρ(sk)R(t)
−k 1{0 < s1 < · · · < sk ≤ t} ds1 . . . dsk.

Proof.

• (1.87): The argument is analogous to the proof of (1.6) =⇒ (1.7).

We define for 0 ≤ s < t, n ≥ 1:

(1.89) Mn =
n∑

k=1

1
{
Ns+(t−s) k

n
−N

s+(t−s)
(k−1)

n

≥ 1
}
.

It is a sum of independent Bernoulli variables with possibly different success parameters.
Its characteristic function is

(1.90)
ϕn(u) = E[exp{i uMn}]

indep.
=

n∏
k=1

(
1 + pn,k(e

iu − 1)
)
, for u ∈ R, with

pn,k = P [Ns+(t−s) k
n
−N

s+(t−s) (k−1)
n

≥ 1], 1 ≤ k ≤ n, n ≥ 1.

With the assumptions (1.74), (1.75), we find that

(1.91) sup
1≤k≤n

pn,k −→
n→∞

0, and
n∑

k=1

pn,k −→
n→∞

∫ t

s
ρ(v) dv = R(t)−R(s).

We use the analytic function log(1 + z), for |z| < 1, and write for large n:

ϕn(u) = exp
{ n∑

k=1

log
(
1 + pn,k(e

iu − 1)
)}
.

Note that when n is large

∣∣ n∑
k=1

log(1 + pn,k(e
iu − 1)

)
−

n∑
k=1

pn,k(e
iu − 1)

∣∣ ≤ C
n∑

k=1

p2n,k
(1.91)−→
n→∞

0 .

This fact and (1.91) now yield that for u ∈ R

ϕn(u) −→
n→∞

exp
{(
R(t)−R(s)

)
(eiu − 1)

}
.(1.92)

տ

characteristic function of the

Poisson(R(t)−R(s))-distribution
at the point u ∈ R
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From (1.92) we deduce with the “Continuity Theorem” for characteristic functions, cf. [4],
p. 97, that

(1.93) Mn converges in law to a Poisson (R(t)−R(s))-distribution.

The remainder of the proof of (1.87) is similar to (1.13), (1.14) and the explanation
following (1.14). The claim (1.87) follows.

• (1.88): For k ≥ 1, 0 ≤ s1 ≤ t1 < s2 ≤ t2 < · · · < sk ≤ tk ≤ t:

P [s1 < S1 ≤ t1, s2 < S2 ≤ t2, . . . , sk < Sk ≤ tk |Nt = k] =(1.94)

P [s1 < S1 ≤ t1, s2 < S2 ≤ t2, . . . , sk < Sk ≤ tk, Sk+1 > t]/P [Nt = k] =

P [Ns1 = 0, Nt1 −Ns1 = 1, Ns2 −Nt1 = 0,

Nt2 −Ns2 = 1, . . . , Ntk −Nsk = 1, Nt −Ntk = 0]/P [Nt = k] =

using (1.87) and the independence of increments

exp{−R(t)}
k∏

i=1

(
R(ti)−R(si)

)
× 1

exp{−R(t)} R(t)k

k!

=

k!
k∏

i=1

(
R(ti)−R(si)

)
R(t)−k = µ

(
(s1, t1]× (s2, t2]× · · · × (sk, tk]

)
,

using the notation of (1.88).

The class of sets A = (s1, t1] × · · · × (sk, tk], with 0 ≤ s1 ≤ t1 < · · · < sk ≤ tk ≤ t, is a

π-system of subsets of Ut
def
= {(x1, . . . , xk); 0 < x1 < · · · < xk ≤ t}, which generate B(Ut).

Note that the conditional law of S1, . . . , Sk given {Nt = k} gives measure 1 to Ut (indeed
P [Sℓ = Sℓ+1 for some ℓ < k and Nt = k] ≤∑n

m=1 P [Ntm
n
−N

t
(m−1)

n

≥ 2] −→
n

0 by (1.75))

and µ (from (1.88)) also gives measure 1 to Ut. So, with the help of Dynkin’s lemma, see
[12], p. 41, it follows from (1.94) that these two probabilities are equal. This concludes
the proof of (1.88).

Remark 1.22.

1) Note that the assumption of uniformity over t bounded in (1.74), (1.75) is
important. Indeed, consider (Nt)t≥0 a Poisson process with rate 1, and

Ñt = Nt + [t] = Nt +
∑
k≥1

1{k ≤ t}, for t ≥ 0.

Then (Ñt)t≥0 has independent increments, and for any t ≥ 0, Ñt+h− Ñt is Poisson(h)
if h > 0 is small enough, and as a result for each t ≥ 0t ≥ 0t ≥ 0:

P [Ñt+h − Ñt = 1] = h+ o(h), P [Ñt+h − Ñt ≥ 2] = o(h), as h→ 0.
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On the other hand, Ñt is not Poisson(t)-distributed, and one can modify (Ñt)t≥0 on a
set of measure 0 so that it only has jumps of size 1. This shows the importance of the
uniformity assumption over bounded t in Definition 1.18 if one wants the conclusions
of Theorem 1.21 to hold.

2) On the other hand, in Definition 1.18, the assumption that (Nt)t≥0 only has jumps
of size 111 is not usual. If this assumption is omitted, a counting process satisfying
the other assumptions of the definition can be modified on a set of null-probability,
in order to also satisfy the assumption of only having jumps of size 1, see Remark 1.6
for analogous considerations. �

We now continue our investigation of inhomogeneous Poisson processes. We are
now ready to see that they all have the form of a time change of a Poisson process
with rate 111, as in (1.77).

Corollary 1.23. Let ρ(·): R+ 7−→ (0,∞) be a continuous function, and (Nt)t≥0 be a

Poisson process with rate ρ(·). Then for a suitable Poisson process (Ñs)s≥0 with rate 1,
on a set of full probability one has:

(1.95) Nt = ÑR(t), t ≥ 0.

Proof. As before, R(t) =
∫ t
0 ρ(u) du, t ≥ 0.

a) When limt→∞R(t) =∞, we define

As = (the inverse function of R)(s), s ≥ 0(1.96)

(incidentally note that A′
s =

1
R′◦As

= 1
ρ(As)

), and

Ñs = NAs .(1.97)

Then, by (1.87), we see that for s > 0, Ñs is Poisson (R(As) = s)-distributed. Moreover,

conditional on Ñs = k ≥ 1, the variables S̃1, . . . , S̃k (i.e. the first k jumps of Ñ.) coincide
with R(S1), . . . , R(Sk) (where S1, . . . , Sk are the first k jumps of N.) and by (1.88) have
distribution k! 1(0 < s̃1 < · · · < s̃k ≤ s) s−k ds̃1 . . . ds̃k. It now follows from (1.9) that

(Ñs)s≥0 is a Poisson process with rate 1. Then (1.97) implies that

ÑR(t) = NAR(t)
= Nt, for t ≥ 0, and (1.95) follows.

b) In case limt→∞R(t) = R∞ < ∞, we then pick an independent Poisson process with
rate 1, (N ′

u)u≥0 (this means we are now working on an “enlarged space’ of the form
(Ω × Ω′,A ⊗ A′, P × P ′), if (Ω,A, P ) is the probability space where (Nt)t≥0 is defined.
Then we set

(1.98)
As = (the inverse function of R)(s), so that
A. is an increasing bijection [0, R∞)→ [0,∞).
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Note that, using for instance the characteristic function exp{R(t)(eiu − 1)} of Nt, Nt

converges in law to a Poisson(R∞)-distribution as t → ∞, so that N∞ = limt→∞Nt

(recall N. is non-decreasing) is a.s. finite. We then define

Ñs = 0, if N∞ =∞ (this event has 0-probability),

= NAs , if N∞ <∞ and s < R∞,

= N∞ +N ′
s−R∞

, if N∞ <∞ and s ≥ R∞ .

(1.99)

With the independence of the increments of N. and (1.87), we see that for 0 < s1 < · · · <
sn < R∞,

Ñs1 , Ñs2 − Ñs1 , . . . , Ñsn − Ñsn−1 are independent, respectively(1.100)

Poisson(sk − sk−1)-distributed, k = 1, . . . , n.

Moreover, ÑR∞ − Ñsn = lims↑R∞ Ñs− Ñsn
a.s.
= N∞ − Ñsn is Poisson(R∞ − sn)-distributed

and independent of the increments in (1.100).

It then follows that (Ñs)s≥0 is a counting process with Ñ0 = 0, jumps of size 1, which
also fulfills (1.7), with λ = 1. It is therefore a Poisson process with rate 1. Then we see
from (1.98), (1.99) that a.s.

Nt = ÑR(t), for all t ≥ 0.

This concludes the proof of (1.95).

Example 1.24. (Record values of an i.i.d. sequence)

We consider Xi, i ≥ 1, i.i.d. positive variables on some (Ω,A, P ) with density:

(1.101) f : R+ → (0,∞), which is continuous.

We introduce the process counting the number of record values of the sequence
Xi, i ≥ 1Xi, i ≥ 1Xi, i ≥ 1, up to level ttt:

Nt =
∑
i≥1

1{Xi ≤ t, Xi > max(X1,X2, . . . ,Xi−1)}.(1.102)
տ

“Xi is a record”

Proposition 1.25.

(1.103)
(Nt)t≥0 is an inhomogeneous Poisson process with rate

ρ(t) = f(t)/(1− F (t)), where F (t) =
∫ t

0
f(u)du for t ≥ 0.
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Proof. We first prove (1.74), (1.75). We pick T > 0, and write for t ≤ T , as h → 0,
considering the first index i ≥ 1, such that Xi > t:

P [Nt+h −Nt ≥ 1] =
∑
i≥1

P
[
Xi ∈ (t, t+ h] and max(X1, . . . ,Xi−1) ≤ t︸ ︷︷ ︸

disjoint events as i varies

] indep.
=(1.104)

∑
i≥1

∫ t+h

t
f(u)du

( ∫ t

0
f(u) du

)i−1
=

∫ t+h

t
f(u)du

(
1− F (t)

)−1
=

f(t)

1− F (t) h+ o(h) (uniformly in t ≤ T , as h→ 0).

In the same fashion we have

P [Nt+h −Nt ≥ 2] ≤ ∑
1≤i<j

P
[
X1 ≤ t, . . . ,Xi−1 ≤ t,Xi ∈ (t, t+ h],(1.105)

Xi+1 ≤ t+ h, . . . ,Xj−1 ≤ t+ h,Xj ∈ (t, t+ h]
] indep.

=
(∫ t+h

t
f(u) du

)2 ∑
1≤i<j

( ∫ t

0
f(u) du

)i−1(∫ t+h

0
f(u) du

)j−i−1
=

(∫ t+h

t
f(u) du

)2
×

(
1− F (t)

)−1(
1− F (t+ h)

)−1
= o(h),

(uniformly in t ≤ T , as h→ 0).

With (1.104) and (1.105), the properties (1.74), (1.75) readily follow.

We will now see that

(1.106) (Nt)t≥0 has independent increments.

We consider 0 < u < v, and we introduce the successive times where Xi, i ≥ 1, is above
level u:

T1 = inf{i ≥ 1;Xi > u}, T2 = inf{i > T1,Xi > u}, . . . , Tj+1 = inf{i > Tj ;Xi > u}, . . .

as well as the σ-algebra:

F =
{
A ∈ A; for each k ≥ 1, there is Bk ∈ σ(X1, . . . ,Xk−1) with

A ∩ {T = k} = Bk ∩ {T = k}
}
.

(1.107)

Note for instance that for r ≤ u, no Xi with i ≥ T1 can be a record below level r, and:

Nr =
∑

1≤i<T1

1{Xi ≤ r,Xi > max(X1, . . . ,Xi−1)} is F-measurable(1.108)

(to see this, one expresses Nr on the event {T1 = k} as a measurable function

of X1, . . . ,Xk−1).
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Moreover, we also see that

(1.109) the sequence XT1 , . . . ,XTj
, . . . is i.i.d., independent of F .

Indeed, if A ∈ F , and f1, . . . , fj are bounded measurable on R:

E[f1(XT1) . . . fj(XTj
), A] =

∑
k≥1

E
[
f1(XT1) . . . fj(XTj

), Bk ∩ {T1 = k}︸ ︷︷ ︸
||

]
(1.110)

{Xk>u,X1≤u,...,Xk−1≤u}.

and using the i.i.d. character of the Xi, and the fact that on {T1 = k} T2, . . . , Tj , . . . are
the successive times where Xk+1, Xk+2, . . . is above level u, the last expression equals

∑
k≥1

P [Bk,X1 ≤ u, . . . ,Xk−1 ≤ u] E[f1(Xk),Xk > u] E[f2(XT1) . . . fj(XTj−1)] =

( ∑
k≥1

P [Bk ∩ {T1 = k}]
︸ ︷︷ ︸

||

)
E[f1(X1) |X1 > u]E[f2(XT1) . . . fj(XTj−1)] =

P [A]

P [A] E[f1(X1) |X1 > u] E[f2(XT1) . . . fj(XTj−1)].

Applying this identity with A = Ω and j = 1, 2, . . . , we see that

(1.111) E[f1(XT1) . . . fj(XTj
), A] = P [A]

∏
1≤ℓ≤j

E[fℓ(X1) |X1 > u],

and this proves (1.109).

We can now observe that in view of (1.109), (1.108)

(1.112) Nv −Nu =
∑
j≥1

1{XTj
≤ v; XTj

> max(XT1 , . . . ,XTj−1)},

is independent of F and hence of (Nr)0≤r≤u (see (1.108)). The claim (1.106) now follows.
This concludes the proof of (1.103).

Note that when the Xi, i ≥ 1 are i.i.d. exponential(λ)-distributed, then f(t) = λ e−λt,

t ≥ 0, and F (t) =
∫ t
0 f(u) du = 1− e−λt, so that ρ(t) ≡ λ. In other words:

(1.113)
for i.i.d. exponential(λ)-variables the process of
record values is a Poisson process with rate λ.
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2 Renewal processes

In this chapter we will discuss a class of counting processes, which generalizes Poisson
processes and allows more general inter-arrival distributions.

2.1 The set-up

Definition 2.1. Given (Ti)i≥1, i.i.d. variables with values in [0,∞), for which

P [Ti = 0] < 1,(2.1)

µ = E[Ti] ≤ ∞.(2.2)

The process with values in N ∪ {∞} defined by:

Nt =
∑
k≥1

1{Sk ≤ t} = sup{n ≥ 0; Sn ≤ t}, t ≥ 0,(2.3)

where

Sn =
n∑

i=1
Ti, n ≥ 1, and S0 = 0,(2.4)

is called renewal process with inter-arrival distribution function F (·) = P [Ti ≤ ·] (this last
expression does not depend on i ≥ 1).

Observe that

(Nt)t≥0 is non-decreasing, right-continuous,(2.5)

P [Nt =∞] = P [for all n; Sn ≤ t] = 0, for any t ≥ 0,(2.6)

thanks to the second lemma of Borel-Cantelli and the fact that P [Ti > α] > 0, for some
α > 0, (c.f. (2.1)).

Note also that Nt ≥ n for t ≥ Sn, and hence

(2.7) lim
t→∞

Nt =∞.

In view of (2.6), we see that we can always modify (Nt)t≥0 on a set of measure 0, to obtain
a counting process in the sense of (1.3). However (Nt)t≥0 may have jumps of size > 1> 1> 1,
since the variables Ti, i ≥ 1, may take the value 0.

Definition 2.2.

(2.8) M(t) = E[Nt], t ≥ 0, is called the renewal function.
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Notation:

We write F ∗k(·) to denote the distribution function of Sk:

(2.9) F ∗k(t) = P [Sk ≤ t], t ∈ R, k ≥ 0,

(note that F ∗0(t) = 1{t ≥ 0} is the “Heavyside function”).

As a result for k ≥ 1:

F ∗k(t) =

∫

R

F ∗(k−1)(t− s) dF (s) =
∫ t

0
F ∗(k−1)(t− s) dF (s), if t ≥ 0,

= 0, if t < 0.

(2.10)

2.2 Some properties of M(t)

Lemma 2.3.

M(t) =
∞∑
k=1

F ∗k(t) is non-decreasing right-continuous, and dM(t) =
∞∑
k=1

dF ∗k(t)(2.11)

(where dF ∗k is the law of Sk),

for t ≥ 0, r ≥ 1, E[N r
t ] <∞, (in particular M(t) = E[Nt] <∞),(2.12)

for s ≥ 0, M̂(s)
def
=

∫ ∞

0
e−sxdM(x) is the Laplace transform of dM and one has

M̂(s) =
F̂ (s)

1− F̂ (s)
, where F̂ (s)

def
=

∫ ∞

0
e−sxdF (x) (= E[e−sT1 ]) is the(2.13)

Laplace transform of dF .

Proof.

• (2.12):
As below (2.6) we choose α > 0 with P [Ti > α] > 0, and define for i ≥ 1 the i.i.d. variables

(2.14) T i
def
= α 1{Ti ≥ α} ≤ Ti, for i ≥ 1,

as well as the corresponding renewal process:

(2.15) N t = sup{n ≥ 0;Sn ≤ t},

where of course we have set S0 = 0, and Sn = T 1 + · · ·+ T n, for n ≥ 1.

Since T i ≤ Ti for i ≥ 1, it follows that Sn ≤ Sn for all n ≥ 0, and hence:

(2.16) N t ≥ Nt, for t ≥ 0.
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Note that τ1 = inf{i ≥ 1;T i > 0}, τ2 = inf{i > τ1; T i > 0}, . . . τj+1 = inf{i > τj ; T i > 0},
are such that

τ1, τ2 − τ1, . . . τj+1 − τj, . . . are i.i.d. geometric(P [T1 ≥ α])-variables(2.17)

(i.e. P [τ = k] = p(1− p)k−1, for k ≥ 1, where p = P [T1 ≥ α]), and

Sτj = j α, when τj <∞ (which is P -a.s. the case).(2.18)

As a result we see that for j ≥ 0:

(2.19) Njα ≤ N jα ≤ τj+1, (because Sτj+1 > j α).

Since E[τ rj+1] <∞ for all r ≥ 1, j ≥ 1, in view of (2.17), the claim (2.12) follows.

• (2.11):
M(t) is non-decreasing and right-continuous, thanks to the monotone convergence theorem
and the properties of (Nt)t≥0 (non-decreasing, right-continuous and integrable by (2.12)).
Moreover:

M(t) = E
[ ∞∑
k=1

1{Sk ≤ t}
] monotone

convergence
=

∑
k≥1

P [Sk ≤ t]

(2.9)
=

∞∑
k=1

F ∗k(t),

(2.20)

and dM(t) =
∑∞

k=1 dF
∗k(t) follows by Lebesgue-Stieltjes.

• (2.13):

M̂(s) =

∫ ∞

0
e−sxdM(x)

(2.11)
=

∫ ∞

0
e−sx

∞∑
k=1

dF ∗k(x)

=
∑
k≥1

∫ ∞

0
e−sxdF ∗k(x) =

∑
k≥1

E[e−s Sk ]

indep.
=

∑
k≥1

E[e−sT1 ]k =
∑
k≥1

F̂ (s)k =
F̂ (s)

1− F̂ (s)
, if s > 0.

(2.21)

The equality extends to s = 0, since both members are infinite.

Remark 2.4. The renewal functionM(t) =
∑∞

k=1 F
∗k(t) is typically difficult to compute,

and the Laplace transform M̂(s) is easier to calculate. However, the inversion of the
Laplace transform is not a straightforward operation, see [6], p. 442. �

Theorem 2.5. (elementary renewal theorem)

(2.22) lim
t→∞

M(t)

t
=

1

µ

(
=

1

E[T1]

)
∈ [0,∞).
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Proof. Before giving the proof we recall theWald identity, cf. [4], p. 158. When Xi, i ≥ 1
are i.i.d. variables with E[|Xi|] < ∞, and τ is a stopping time of the filtration Fn =
σ(X1, . . . ,Xn), n ≥ 1, F0 = {φ,Ω}, with E[τ ] <∞, then:

E[Sτ ] = E[X1]E[τ ], with Sn = X1 + · · ·+Xn, n ≥ 1

= 0, n = 0.
(2.23)

We now continue the proof of (2.22). We begin with the case

• µ <∞: Then P -a.s., for t ≥ 0,

(2.24) SNt ≤ t < SNt+1,

and moreover

τ
def
= Nt + 1 = inf{k ≥ 0, Sk > t} is an (Fn)-stopping time,

(where Fn = σ(T1, . . . , Tn), for n ≥ 1, = {φ,Ω}, for n = 0).
(2.25)

As a result of (2.23), (2.24), (2.25)

E[SNt ] ≤ t < E[SNt+1]
(2.23)
= E[Nt + 1]︸ ︷︷ ︸

↑
× µ (2.8)

=
(
M(t) + 1

)
µ.

finite by (2.12)

Hence

(2.26) lim
t→∞

M(t)

t
≥ 1

µ
.

Moreover, if we define for c > 0, the truncated variables

(2.27) T i = Ti ∧ c (= min(Ti, c)), for i ≥ 1,

the variables T i, i ≥ 1, are i.i.d., E[T i] <∞, and T i ≤ Ti, so that

(2.28) N t ≥ Nt andM (t) ≥M(t),

with N t, resp. M(t), the renewal process, resp. the renewal function, attached to the
variables T i, i ≥ 1. Moreover, one has P -a.s.

(2.29) SNt+1 ≤ t+ c,

so that

(2.30) t+ c ≥ E[SN t+1]
(2.23)
= E[T 1](M(t) + 1)

(2.28)

≥ E[T 1](M(t) + 1),
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and hence

(2.31) lim
t→∞

M(t)

t
≤ 1

E[T 1]
=

1

E[T1 ∧ c]
.

Letting c→∞, we find that E[T1 ∧ c] ↑ E[T1] so that

(2.32) lim
t→∞

M(t)

t
≤ 1

µ
.

Together with (2.26) this proves (2.22).

• µ =∞:

Using the same truncation technique, cf. (2.27), we obtain (2.31) and letting c → ∞, we
find

(2.33) lim
t→∞

M(t)

t
= 0,

and this proves (2.22).

We right away state a refinement of the above result using the strong law of large
numbers.

Theorem 2.6.

1) If µ ≤ ∞,

(2.34) P -a.s., lim
t→∞

Nt

t
=

1

µ

(
∈ [0,∞)

)
.

2) If E[T 2
1 ] <∞ and σ > 0 (writing σ2 = var(T1)), then as t→∞,

(2.35)
Nt − t/µ
σ
√
t/µ3

converges in law to an N(0, 1)-distribution.

Proof.

- For (2.34), see [4], p. 66, or [14], p. 40.

- For (2.35), see [12], p. 189.

Example 2.7. (renewal reward process)

A non-profit organization is receiving at the times Si, i ≥ 1, of a renewal process the
donations Di, i ≥ 1, which are independent and i.i.d. distributed (Di ≥ 0, with E[Di] <
∞). The cumulative wealth received by the organization at time t is:

(2.36) R(t) =
∑
i≥1

Di 1{Si ≤ t} (reward process).
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By the strong law of large numbers and (2.34), P -a.s.,

lim
t→∞

R(t)

t
= lim

t→∞

1

Nt

Nt∑
i=1

Di

︸ ︷︷ ︸
↓

× Nt

t
−→ E[D1]

µ
,

ց 1

µ

E[D1]

that is

(2.37) P -a.s. lim
t→∞

R(t)

t
=
E[D1]

µ
.

This result can of course be extended to the case where the Di are not necessarily non-
negative (gains and costs), with E[|Di|] <∞. �

2.3 Renewal with delays

This corresponds to the situation where the distribution of T1 does not necessarily coincide
with the common distribution of the Ti, i ≥ 2:

0 S1 S2 S3 S4

T1 T2 T3 T4

Fig. 2.1

Ti, i ≥ 1, are independent R-valued, with Ti, i ≥ 2, identically distributed(2.38)

and such that (2.1) holds (i.e. P [Ti = 0] < 1, for i ≥ 2).

Remark 2.8.

1) Interpretation in terms of delay:

If T̃i, i ≥ 1, are i.i.d. R+-valued variables satisfying (2.1), and S̃0 is an independent
R+-valued variable, “the delay”, we can set as in (0.12), for i ≥ 1,

S̃i = S̃0 + T̃1 · · ·+ T̃i .

To fall back on (2.38) we simply define

Si = S̃i−1, i ≥ 1 and T1 = S̃0, Ti = T̃i−1, for i ≥ 2.

This explains the terminology “renewal with delay”.
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2) Given (Ns)s≥0 a renewal process, one is very naturally led to a renewal process with
delay, if one for instance considers the shifted renewal process after time t:

(2.39) N s = Ns+t −Nt, s ≥ 0 (P -a.s. well-defined, cf. (2.6)).

0 tSNt SNt+1

T 1 T 2

Fig. 2.2

So we see that for s ≥ 0

(2.40)

N s =
∑
k≥1

1{Sk ≤ s}, with Sk = T 1 + · · ·+ T k, for k ≥ 1, and

T 1 = SNt+1 − t, the “excess at time t”,

T i = TNt+i, for i ≥ 2.

With (2.25), it is straightforward to infer that T i, i ≥ 1, defined above satisfy (2.38). �

For a renewal with delay we use the following notation:

G(t) : the distribution function of T1

F (t) : the distribution function of Ti, i ≥ 2,

M(t) = E[Nt], with Nt =
∑
k≥1

1{Sk ≤ t}
↑

renewal function

↑

renewal process

(note that E[Nt] <∞ because of (2.12) and the interpretation of “delay”).

In analogy to (2.11), (2.13) of Lemma 2.3 we now have:

Lemma 2.9. (renewal with delay)

M(t) =
∑
k≥0

G ∗ F ∗k(t), t ≥ 0, and dM(t) =
∞∑
k=0

dG ∗ F ∗k(t)(2.41)

(with the notation G ∗ F ∗k(t) =

∫ t

0
G(t− s) dF ∗k(s), t ≥ 0,

for k ≥ 0 and t ≥ 0,

= 0, for t < 0).

M̂(s) =
Ĝ(s)

1− F̂ (s)
, for s ≥ 0.(2.42)

�
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In the case where

(2.43) µ(= E[T2]) <∞,

an important special role is played by the following specific delay distribution
function:

G∗(x) =
1

µ

∫ x

0

(
1− F (t)

)
dt, x ≥ 0

= 0, x < 0.

(2.44)

Remark 2.10.

1) Note that

∫ ∞

0

(
1− F (t)

)
dt =

∫ ∞

0
P [T2 > t] dt

Fubini
= E

[ ∫ ∞

0
1{T2 > t} dt

]
= E[T2] = µ.

As a consequence:

lim
x→∞

G∗(x) = 1, and G∗ is indeed a distribution function.

2) Note that in the case of the exponential(λ)-distribution (i.e. F (x) = 1− e−λx, x ≥ 0,
= 0, when x < 0),

G∗(x) = λ

∫ x

0
e−λtdt = 1− e−λx, for x ≥ 0, = 0, for x < 0,

and G∗ coincides with F in this special case. �

As we now see the delay distribution function G∗ induces a stationary behavior of the
renewal process with delay (see also (1.45), in the case of the Poisson process).

Theorem 2.11. (µ <∞, stationary behavior)

For the renewal with delay corresponding to G∗ in (2.44),

(2.45) M(t) =
t

µ
, for t ≥ 0.

Moreover, given t > 0, if one considers the inter-arrival times after time t:

(2.46) T 1 = SNt+1 − t, T i = TNt+i, i ≥ 2, (see also (2.40)),

then

(2.47) (T i)i≥1 has same distribution as (Ti)i≥1.
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0 tSNt SNt+1

T 1 T 2

T1 T2

with distribution

function G∗(·)
with distribution

function F (·)

Fig. 2.3

Proof.

• (2.45): Note that for s > 0,

Ĝ∗(s) =

∫ ∞

0
e−sx dG∗(x)

(2.44)
=

∫ ∞

0

(
1− F (x)

)
e−sx dx

µ
=

1

sµ

∫ ∞

0

(
1− F (x)

)
︸ ︷︷ ︸

||

P [T2 > x]

s e−sxdx

=
1

sµ

∫ ∞

0
P [T2 > x] se−sxdx

Fubini
=

1

sµ
E
[ ∫ T2

0
se−sxdx

]
=

1

sµ
E[1− e−sT2 ]

=
1− F̂ (s)

sµ
.

(2.48)

Therefore with (2.42) we find that

(2.49) M̂(s) =
Ĝ∗(s)

1− F̂ (s)
=

1− F̂ (s)
sµ

1

1− F̂ (s)
=

1

sµ
=

1

µ

∫ ∞

0
e−sxdx.

This equality of the Laplace transforms shows that M(t) = t
µ , t ≥ 0, and proves (2.45),

(see also [6], p. 432).

• Proof of (2.47):
Using the same argument as below (2.40) (which uses the independence of the Ti, i ≥ 1, and
the fact that Nt+1 is an (Fn)-stopping time, for Fn = σ(T1, . . . , Tn), n ≥ 1, F0 = {φ,Ω}),
we deduce that

(2.50) T i, i ≥ 1, are independent and T i, i ≥ 2, are distributed like T2.
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So we only need to check that T 1 has same law as T1 (i.e. has the distribution function
G∗(·), from (2.44)). For x > 0, one has:

(2.51)
P [T 1 > x] = P [T 1 > x,Nt = 0] + P [T 1 > x,Nt > 0]

(2.46)
=

P [T1 > x+ t] +
∑
k≥1

P [Sk ≤ t, Sk + Tk+1 > t+ x] = ,

conditioning on Sk in the last sum this equals

1−G∗(x+ t) +
∑
k≥1

E[Sk ≤ t, 1− F (t+ x− Sk)]

and since Sk has distribution function G∗ ∗ F ∗(k−1)(·), see (2.41), this equals

1−G∗(x+ t) +
∑
k≥1

∫ t

0

(
1− F (t+ x− y)

)
d(G∗ ∗ F ∗(k−1))(y)

(2.41)
=

1−G∗(x+ t) +

∫ t

0

(
1− F (t+ x− y)

)
dM(y)

(2.45)
= 1−G∗(x+ t)

+

∫ t

0

(
1− F (t+ x− y)

) dy
µ
.

Setting u = t + x − y in the last integral, and using (2.44) for the first term, the above
equals

1

µ

∫ ∞

x+t

(
1− F (u)

)
du+

1

µ

∫ x+t

x

(
1− F (u)

)
du =

1

µ

∫ +∞

x

(
1− F (u)

)
du = P [T1 > x].

We thus see that T 1 and T1 have the same distribution and using (2.50) our claim (2.47)
follows.

Remark 2.12. Note that P -a.s.,

N s
def
= Nt+s −Nt =

∑
k≥1

1{Sk ≤ s}, for all s ≥ 0,

↑
T 1 + · · ·+ T k

(2.52)

and we see that the renewal process with delay (N s)s≥0 has the same distribution as
(Ns)s≥0, when the delay has distribution G∗, this regardless of t > 0. This amplifies the
statement (2.47) about stationarity of the renewal with delay (2.44). Note also that for
t, s ≥ 0

(2.53) M(t+ s)−M(t) =
s

µ
=M(s),

(with M (s) the renewal function attached to N .). �
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2.4 Blackwell’s Renewal Theorem

This is an important strengthening of the elementary renewal theorem, cf. Theorem 2.5.
We begin with

Definition 2.13. A probability ν on (R+,B(R+)) with ν(0) < 1 is called arithmetic if
for some a > 0,

(2.54) ν({0, a, 2a, 3a, . . . }) = 1.

The largest a such that (2.54) holds is called the span of ν. If there is no a > 0 for which
(2.54) holds, then ν is called non-arithmetic.

We say that a distribution function F is arithmetic or non-arithmetic if the corre-
sponding statement holds for the probability dF .

Theorem 2.14. (Blackwell’s renewal theorem)

If the distribution function F of inter-arrival times is non-arithmetic, then

(2.55) lim
t→∞

M(t+ h)−M(t) =
h

µ
, for h > 0, (with µ =

∫ ∞

0
xdF (x) ≤ ∞).

Remark 2.15.

1) A version of Blackwell’s theorem also holds for arithmetic distributions, (cf. [12], pp. 221
and 238 or [6], p. 360). In this case one simply needs to restrict h to multiples of the
span of dF .

2) The convergence in (2.55) can be rephrased in terms of vague convergence of Radon
measures on R+. Namely, if ρt is the measure on R+ such that ρt([0, s]) =M(t+ s)−
M(t), for s ≥ 0, then

lim
t→∞

∫
f(s) dρt(s) =

∫ ∞

0
f(s)

ds

µ
, for any f continuous on R+(2.56)

with compact support

((2.55) corresponds to f = 1[0,h], which is not continuous, but the equivalence can be
proved along similar arguments as for the various definitions/characterizations of weak
convergence, cf. [14], p. 50 and 53, and (2.56) expresses the fact that ρt(ds) converges
vaguely to 1[0,∞)

ds
µ , as t→∞).

3) Blackwell’s theorem immediately implies the elementary renewal theorem. Indeed, for
t ≥ 1,

M(t)

t
=
M(t)−M([t])

t
+

[t]−1∑
k=0

M(k + 1)−M(k)

[t]
× [t]

t
+
M(0)

t
ց as t→∞

1

But:
M(t)−M([t])

t
≤ M([t] + 1)−M([t])

t

(2.55)−→ 0 , and
M(0)

t
→ 0
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and, since convergence of a sequence implies the convergence in the sense of Cesàro of

the same sequence, 1
[t]

∑[t]−1
k=0 M(k+1)−M(k)

(2.55)−→
t→∞

1
µ . We thus recover the elementary

renewal theorem:

lim
t→∞

M(t)

t
=

1

µ
.

�

For the time being we will content ourselves with a heuristic description of one of the
proofs of Blackwell’s theorem using coupling, initially due to T. Lindvall, see [12], p. 243.
An other proof more analytical in spirit can be found in [6], p. 364.

Sketch of proof by “coupling” (µ <∞).

The idea is to consider the basic renewal process as well as an independent renewal process
with the delay distribution G∗ of (2.44), (T i)i≥1.

T3T1 T2

0

T 1 T 2 T 3 T 4

S1 S2 S3 S∗
5S∗

4

S1 S2 S3 S4 S5 S6

||

Sn0

S4 = Sk0

distribution function G∗

“stationary renewal”

basic renewal

Fig. 2.4

At some point Sn0 of the basic renewal process, there is “very closely” afterwards a point
Sk0 in the stationary renewal. One builds a new sequence S∗

n with

S∗
n = Sn, for n ≤ n0,

S∗
n0+i = Sn0 + Sk0+i − Sk0 , for i ≥ 1.

One checks that (S∗
n)n≥1 has same distribution as Sn. On the other hand, almost surely

for large t,

N∗
t+h −N∗

t =
∑
k≥1

1{t < S∗
k ≤ t+ h}

∼=
∑
j≥1

1{t < Sj ≤ t+ h} = N t+h −N t.
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But we also know that, cf. (2.45) or (2.53),

M(t+ h)−M(t)
def
= E[N t+h −N t] =

h

µ
,

and in this way one infers that

M(t+ h)−M(t) = E[Nt+h]− E[Nt] = E[N∗
t+h]− E[N∗

t ]

≃M(t+ h)−M(t) =
h

µ
.

Of course the above lines are not a proof, but merely carry out the intuition of the real
proof. �

2.5 The renewal equation

An important feature of renewal processes is that “things start afresh” after the times Sk,
k ≥ 1. This element plays a crucial role in the derivation of so-called renewal equations
for a variety of quantities of interest.

We consider

h: R+ → R, measurable and bounded on compact intervals,(2.57)

F the distribution function of a non-negative variable, not a.s. equal to zero.(2.58)

The (h, F )-renewal equation:

One looks for measurable functions g on R, vanishing on (−∞, 0) with g(t − ·) ∈ L1(dF )
for each t ≥ 0, such that

g(t) = h(t) +

∫ t

0
g(t− s) dF (s), for t ≥ 0,

= 0, for t < 0

(2.59)

(the notation “
∫ t
0 ” means “

∫
[0,t]”). In compact notation (2.59) is

g = h+ g ∗ F (where g ∗ F stands for the convolution of g with dF ).

There is a rich collection of examples where such renewal equations occur. They are related
with the widespread occurrence of mechanisms of “regeneration” or “renewal”. We will
later introduce a more restrictive notion of solution that will offer a more convenient
functional framework to solve renewal equations, see Section 2.7 in this chapter.
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2.6 Examples

2.6.1 The renewal function

We consider M(t) = E[Nt]
(2.11)
=

∑∞
k=1 F

∗k(t).

Proposition 2.16.

M(t) = F (t) +

∫ t

0
M(t− s) dF (s), for t ≥ 0,

= 0, for t < 0

(2.60)

(i.e. M(·) is solution of the (F,F )-equation).

Proof. We give two arguments:

1) analytic: for t ≥ 0, one has

M(t) =
∞∑
k=1

F ∗k(t) = F (t) +
∑
k≥2

F ∗(k−1) ∗ F (t)

= F (t) +
∑
k≥2

∫ t

0
F ∗(k−1)(t− s) dF (s)

monotone
convergence

= F (t) +

∫ t

0
M(t− s) dF (s),

(2.61)

and (2.60) readily follows.

2) probabilistic: for t ≥ 0, one has

M(t) = E[Nt] = E
[ ∑
k≥1

1{T1 + · · ·+ Tk ≤ t}
]

= P [T1 ≤ t] +E
[ ∑
k≥2

1{T1 + Sk − S1 ≤ t}
]
.

տ ր

independent

Note that T1 and (Sn+1−S1)n≥1 are independent and (Sn+1−S1)n≥1 has same distribution
as (Sn)n≥1. As a result conditioning on T1 we find that

E
[ ∑
k≥2

1{T1 + Sk − S1 ≤ t}
∣∣T1

]
P−a.s.
= M(t− T1) .(2.62)

↑
this is = 0 for T1 > t

We thus find that

M(t) = P [T1 ≤ t] + E
[
E
[ ∑
k≥2

1{T1 + Sk − S1 ≤ t}
∣∣T1

]]

(2.62)
= P [T1 ≤ t] + E[M(t− T1)]

= P [T1 ≤ t] +
∫ t

0
M(t− s) dF (s),

46



and (2.60) follows. The probabilistic argument we just described highlights the regenera-
tion, which occurs after time T1(= S1).

Remark 2.17. (renewal with delay)

In the case of a renewal with delay distribution function G(·), one finds instead that
M(t) = E[Nt] satisfies the (G,F )-renewal equation:

M(t) = G(t) +

∫ t

0
M(t− s) dF (s), t ≥ 0,

= 0, t < 0

(2.63)

(with similar arguments as above).

2.6.2 The age and excess distribution functions

0 tSNt SNt+1

At Et

Fig. 2.5: (Ns)s≥0 renewal process

For x ≥ 0, we define

(2.64)
ax(t) = P [At ≤ x] (= 0 for t < 0, by convention)

ex(t) = P [Et ≤ x] (= 0 for t < 0, by convention).

Proposition 2.18.

ax(t) = 1{t≤x}

(
1− F (t)

)
+

∫ t

0
ax(t− s) dF (s), t ≥ 0,

= 0, t < 0

(2.65)

(i.e. ax(·) is the solution of the (1{·≤x}(1− F (·)), F )-renewal equation),

ex(t) = F (t+ x)− F (t) +
∫ t

0
ex(t− s) dF (s), t ≥ 0,

= 0, t < 0

(2.66)

(i.e. ex(·) is the solution of the (F (· + x)− F (·), F )-renewal equation).
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Proof.

• (2.65): Pick t ≥ 0, x ≥ 0, and write:

ax(t) = P [At ≤ x] = P [S1 > t,At ≤ x] + P [S1 ≤ t, At ≤ x]
||

t on {S1 > t}

= 1{t≤x}

(
1− F (t)

)
+ P [S1 ≤ t, t− SNt ≤ x] .

(2.67)

We also have since {S1 ≤ t} = {Nt ≥ 1},

P [S1 ≤ t, t− SNt ≤ x] =
∞∑
n=1

P [Nt = n, t− Sn ≤ x] =
∞∑
n=1

P [t− x ≤ Sn ≤ t < Sn+1] =
∞∑
n=1

P [t− x ≤ T1 + Sn − S1 ≤ t < T1 + Sn+1 − S1] .
տ տ ր

︸ ︷︷ ︸
independent

So, conditioning on T1, we obtain

=
∞∑
n=1

∫ t

0
P
[
t− x ≤ s+ Sn − S1︸ ︷︷ ︸ ≤ t < s+ Sn+1 − S1︸ ︷︷ ︸

]
dF (s)

տ ր

distributed as (Sn−1, Sn)

=
∞∑
n=1

∫ t

0
P
[
t− s− x ≤ Sn−1 ≤ t− s < Sn︸ ︷︷ ︸

||

{Nt−s = n− 1, At−s ≤ x}

]
dF (s) =

∫ t

0
P [At−s ≤ x] dF (s)

=

∫ t

0
ax(t− s) dF (s) .

Coming back to (2.67) we find (2.65).

• (2.66): We follow an analogous strategy. We pick t ≥ 0, x ≥ 0, and write:

ex(t) = P [Et ≤ x] = P [S1 > t,Et ≤ x] + P [S1 ≤ t, Et ≤ x]
||

1{t < T1 ≤ t+ x}

= F (t+ x)− F (t) + P [S1 ≤ t, SNt+1 ≤ t+ x],

and since {S1 ≤ t} = {Nt ≥ 1}:

= F (t+ x)− F (t) +
∞∑
n=1

P
[
Sn ≤ t < Sn+1︸ ︷︷ ︸

||
Nt = n

, Sn+1 ≤ t+ x
]

= F (t+ x)− F (t) +
∞∑
n=1

P [Sn − S1 ≤ t− T1 < Sn+1 − S1 ≤ t− T1 + x]
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and then conditioning on T1:

= F (t+ x)− F (t) +
∞∑
n=1

∫ t

0
P
[
Sn − S1︸ ︷︷ ︸ ≤ t− s < Sn+1 − S1︸ ︷︷ ︸ ≤ t− s+ x

]
dF (s)

տ ր

same law as (Sn−1, Sn)

= F (t+ x)− F (t) +
∞∑
n=1

∫ t

0
P
[
Sn−1 ≤ t− s < Sn ≤ t− s+ x︸ ︷︷ ︸

||

{Nt−s = n− 1, Et−s ≤ x}

]
dF (s)

= F (t+ x)− F (t) +
∫ t

0
P [Et−s ≤ x] dF (s)

= F (t+ x)− F (t) +
∫ t

0
ex(t− s) dF (s),

and (2.66) follows.

We continue our discussion of examples of quantities satisfying a renewal equation.

2.6.3 Cycles of operation and repair of a machine

We assume that (Ui, Vi)i≥1 are i.i.d. R2
+-valued (but U1, V1 are possibly dependent, for

instance Vi = U2
i + 1, with the Ui ≥ 0, i ≥ 1, i.i.d. variables), and set for i ≥ 1

(2.68)
Ti = Ui + Vi, by assumption not a.s. equal to 0,
F (t) = P [T1 ≤ t].

We consider the times

(2.69) Sk = T1 + T2 + · · ·+ Tk, k ≥ 1, S0 = 0.

function G

0 S1 S2 S3

U1 U2 U3V1 V2 V3

periods during which the machine functions

periods of repair of the machine

Fig. 2.6
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We interpret the Ui, i ≥ 1, as successive periods during which a given machine is oper-
ational and Vi as the repair time of the machine consecutive to the period of length Ui

during which the machine was operational.

We introduce g(t) the probability that the machine is operational at time t ≥ 0:

(2.70)

g(t) = P [Yt = 1] =
∑
k≥0

P [Sk ≤ t < Sk + Uk+1], where

Ys = 1{s ∈ ⋃
i≥0

[Si, Si + Ui+1)}, for s ≥ 0.

By convention we set g(t) = 0, for t < 0.

Proposition 2.19.

g(t) = P [U1 > t] +

∫ t

0
g(t− s) dF (s), for t ≥ 0,

= 0, for t < 0

(2.71)

(i.e. g(·) is the solution of the (P [U1 > ·], F )-renewal equation).
Proof. For t ≥ 0, we have

g(t) = P
[
Yt = 1, T1 > t︸ ︷︷ ︸

{U1>t}

]
+ P [Yt = 1, T1 ≤ t]

and since {T1 ≤ t} = {Nt ≥ 1},

= P [U1 > t] + E
[ ∑
k≥1

1{Sk ≤ t < Sk + Uk+1︸ ︷︷ ︸}
]
.

ր
↑

T1 + Sk − S1 T1 + Sk − S1 + Uk+1

(2.72)

Conditioning on T1 we find that due to the independence properties

(2.73)

E
[ ∑
k≥1

1{T1 + Sk − S1 ≤ t < T1 + Sk − S1 + Uk+1} |T1
]
= Φ(T1), where

Φ(s) = E
[ ∑
k≥1

1{s + Sk − S1 ≤ t < s+ Sk − S1 + Uk+1

]

= E
[ ∑
k≥1

1{Sk−1 ≤ t− s < Sk−1 + Uk}
]
= g(t− s).

Coming back to (2.72) we find that

g(t) = P [U1 > t] + E[g(t − T1)]

= P [U1 > t] +

∫ t

0
g(t− s) dF (s), t ≥ 0

(and g(t) = 0, for t < 0, by convention).

This proves (2.71).
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2.7 Well-posedness of the renewal equation

Our next step is to provide an existence and uniqueness result for solutions of the renewal
equation.

Theorem 2.20. (existence and uniqueness)

Let h(·) vanish on (−∞, 0) be measurable, locally bounded, and F (·) with F (0) < 1, be the
distribution function of a non-negative variable not a.s. equal to 0. There is a unique g
measurable, locally bounded, vanishing on (−∞, 0), solution of the (h, F )-equation:

g = h+ g ∗ F,(2.74)

namely

g = h+ h ∗M (= h ∗ U, if U(t)
def
= 1{t ≥ 0}+M(t) ).(2.75)

Proof.

• Existence: Define

g0(t) = (h+ h ∗M)(t) = h(t) +

∫ t

0
h(t− s) dM(s), if t ≥ 0,

= 0, if t < 0.

Then g0 is indeed measurable, locally bounded (because h is locally bounded), vanishes
on (−∞, 0). Moreover, one has:

(2.76)

h+ g0 ∗ F = h+ (h+ h ∗M) ∗ F = h+ h ∗ F + (h ∗M) ∗ F =
h+ h ∗ F + h ∗ (M ∗ F ) = h+ h ∗

(
F +M ∗ F︸ ︷︷ ︸

)
= h+ h ∗M = g0,

|| (2.60)

M

and g0 is a solution of (2.74). Incidentally, the equality (h∗M)∗F = h∗(M ∗F ) follows by
noting that both members coincide with the “distribution function” of the image measure
of h(u) du⊗ dM(v) ⊗ dF (w) under the map (u, v, w) → u+ v + w.

• Uniqueness:
If g1, g2 are two solutions of (2.74) which are measurable and locally bounded, then:

g1 − g2 = (g1 − g2) ∗ F, and iterating

= (g1 − g2) ∗ F ∗n for all n ≥ 1 .
(2.77)

Therefore, for t ≥ 0,

(2.78)

|g1(t)− g2(t)| =
∣∣∣
∫ t

0
(g1 − g2)(t− s) dF ∗n(s)

∣∣∣ ≤
(
sup
[0,t]
|g1(·)|+ sup

[0,t]
|g2(·)|

)
P [Nt ≥ n] −→

n→∞
0,

since E[Nt] =M(t)
(2.12)
< ∞ .

Hence, g1 = g2 and the theorem is proved.
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2.8 Asymptotic behavior of solutions of the renewal equation

We are now going to discuss the large t behavior of the solution g(·) of the renewal equation
(cf. Theorem 2.20 for the precise formulation)

g = h+ g ∗ F .

We begin by the discussion of an example.

Example 2.21. When h = 1[a,b), where 0 ≤ a < b < ∞, we know from (2.75) that the
unique locally bounded measurable solution g of

g(t) = h(t) +

∫ t

0
g(t− s) dF (s), for t ≥ 0,

= 0, for t < 0,

is given by

since h(t− s) = 1{a ≤ t− s < b}

g(t) = h(t) +

∫ t

0
h(t− s) dM(s)

↓
= h(t) +

∫

[0,t]
1(t−b,t−a](s) dM(s)

= 1[a,b)(t) +M(t− a)−M(t− b) (by convention M(u) = 0 for u < 0).

(2.79)

As a result of Blackwell’s renewal theorem, cf. (2.55), we see that when F is a non-
arithmetic distribution function, then

(2.80) lim
t→∞

g(t)
(2.55)
=

b− a

µ
=

1

µ

∫ ∞

0
h(u) du.

Clearly, a similar statement “limt→∞ g(t) = 1
µ

∫∞
0 h(u)du”, will hold when h is a finite

linear combination of indicator functions of intervals of the form 1[ak,bk), 1 ≤ k ≤ ℓ, with
0 ≤ ak < bk < ∞, for 1 ≤ k ≤ ℓ. We are now going to vastly generalize the class of
functions h for which this statement holds. �

Definition 2.22. h: R+ → R+, measurable, is called directly Riemann-integrable

(abbreviation: d.R.i.) if

for all ∆ > 0,
∞∑
k=0

sup
t∈[k∆,(k+1)∆)

h(t) <∞,(2.81)

and

lim
∆→0

∆
∞∑
k=0

sup
t∈[k∆,(k+1)∆)

h(t) = lim
∆→0

∆
∞∑
k=0

inf
t∈[k∆,(k+1)∆)

h(t).(2.82)

h: R+ → R is said to be d.R.i. when h+ = max(h, 0) and h− = max(−h, 0) are both d.R.i.
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Remark 2.23. h(t) =
∑∞

k=1 1[k,k+2−k](t) is not d.R.i. (indeed (2.81) does not hold, pick
∆ = 1). On the other hand

∫ ∞

0
h(t)dt = lim

u→∞

∫ u

0
h(u)du
↑

Riemann-integral

exists, and h is Riemann-integrable. �

Lemma 2.24.

h ≥ 0, d.R.i., then h is bounded, continuous at a.e. point of R+,(2.83)

and lim
t→∞

h(t) = 0.

h measurable bounded on R+, vanishing outside a compact and(2.84)

continuous at a.e. point of R+ is d.R.i. .

h ≥ 0, non-increasing with

∫ ∞

0
h(s) ds <∞, is d.R.i. .(2.85)

0 ≤ h ≤ H, H d.R.i., h continuous at a.e. points of R+, measurable,(2.86)

then h is d.R.i. .

Proof.

• (2.83):
Because of (2.81) with ∆ = 1, h is bounded and limt→∞ h(t) = 0. Moreover, (2.82) implies
that h is Riemann-integrable on each [0, T ].

This fact implies that h is continuous at a.e. point of [0, T ], see [7], p. 184. This proves
(2.83).

• (2.84):
This implies that h is Riemann-integrable on [0, T ] and equal to 0 on [0, T ]c, for some
T > 0 (same reference), and (2.81), (2.82) follow.

• (2.85):

∞ >

∫ ∞

0
h(s) ds =

∞∑
1

∫ n∆

(n−1)∆
h(s) ds ≥

∞∑
1
∆h(n∆) = ∆

∑
n≥1

sup
[n∆,(n+1)∆)

h(·),

and (2.81) follows. Moreover, we have:

∆
∞∑
n=0

sup
[n∆,(n+1)∆)

h(·)
︸ ︷︷ ︸

≥
∫ ∞

0
h(s) ds ≥ ∆

∞∑
n=0

inf
[n∆,(n+1)∆)

h(·)
︸ ︷︷ ︸

=

∆
∞∑
n=0

h(n∆)

≥

∆
∞∑
n=0

h((n+ 1)∆) .
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However,

∆
∞∑
n=0

h(n∆)− h
(
(n+ 1)∆

)
= ∆h(0)→ 0, as ∆→ 0,

and hence (2.82) follows.

• (2.86):
h is then Riemann-integrable on any finite interval and (2.81) holds. Then (2.82) easily
follows.

We now come to our main result concerning the asymptotic behaviour of solutions of
the renewal equation.

Theorem 2.25. (Smith’s key renewal theorem)

Let hhh be d.R.i. and F be a non-arithmetic distribution function, then the unique
measurable, locally bounded, vanishing on (−∞, 0), solution g of the equation g = h+g∗F
satisfies

(2.87) lim
t→∞

g(t) =
1

µ

∫ ∞

0
h(u) du.

Proof. We know from (2.75) that

g(t) = h(t) +

∫ t

0
h(t− s) dM(s), for t ≥ 0,

and (2.83) implies that limt→∞ h(t) = 0. We thus only have to show that:

(2.88) lim
t→∞

∫ t

0
h(t− s) dM(s) =

1

µ

∫ ∞

0
h(u) du.

• Assume first that:

(2.89) h(t) =
∑
n≥1

cn 1[(n−1)∆,n∆)(t), with cn ≥ 0,
∑
n
cn <∞ and F (∆) < 1.

Then, by monotone convergence and the calculation of (2.79), we find that

(2.90)

∫ t

0
h(t− s) dM(s) =

∑
n≥1

cn
(
M(t− (n− 1)∆)−M(t− n∆)

)
.

We will dominate the terms of the above series with the help of the following

Lemma 2.26.

(2.91) sup
u≥0

(
M(u)−M(u−∆)

)
≤

(
1− F (∆)

)−1
(recall that M(v) = 0, for v < 0).
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Proof. M satisfies the (F,F )-renewal equation, cf. (2.60), and since M ∗ F = F ∗M , we
find:

M(t) = F (t) +

∫ t

0
F (t− s) dM(s), for t ≥ 0,

and hence

1 ≥ F (t) =M(t)−
∫ t

0
F (t− s) dM(s)

=

∫ t

0

(
1− F (t− s)

)
dM(s) ≥

∫ t

0

(
1− F (∆)

)
1(t−∆,t](s) dM(s)

=
(
1− F (∆)

)(
M(t)−M(t−∆)

)
,

(2.92)

and (2.91) follows.

Coming back to (2.90), we see that each term in the series in the right-hand side of
(2.90) is dominated by const(∆) cn, which is summable. By Blackwell’s renewal theorem,
cf. (2.55), each term converges to cn

∆
µ , as t tends to infinity. Thus, with dominated

convergence in the right-hand side of (2.90), we find that

(2.93) lim
t→∞

∫ t

0
h(t− s) dM(s) =

∑
n≥1

cn
∆

µ
=

1

µ

∫ ∞

0
h(u) du.

This proves (2.88) and hence (2.87) when h is of the form (2.89).

• Assume h ≥ 0 is d.R.i.: We write

h∆(t) =
∑
n≥0

inf
[n∆,(n+1)∆)

h 1[n∆,(n+1)∆)(t)

h∆(t) =
∑
n≥0

sup
[n∆,(n+1)∆)

h 1[n∆,(n+1)∆)(t),

so that h∆ ≤ h ≤ h∆.

Using the previous step we find that when ∆ > 0:

(2.94)

∫ t

0
h∆(t− s) dM(s) ≤

∫ t

0
h(t− s) dM(s) ≤

∫ t

0
h∆(t− s) dM(s)

(2.93) ↓ t→∞ (2.93) ↓ t→∞

1
µ

∫∞

0
h∆(u)du

1
µ

∫∞

0
h∆(u)du .

Moreover, in view of (2.82), we see that

lim
∆→0

∫ ∞

0
h∆(u) du = lim

∆→0

∫ ∞

0
h∆(u) du =

∫ ∞

0
h(u) du.

55



We thus find from (2.94) that

lim
t→∞

∫ t

0
h(t− s) dM(s) =

1

µ

∫ ∞

0
h(u) du,

i.e. (2.88) holds and (2.87) follows.

• The general case of h d.R.i.:

We simply write h = h+ − h−, with h+ = max(h, 0), h− = max(−h, 0), so (2.88), and
hence (2.87), follow from the previous step.

2.9 Applications

2.9.1 The age and excess distribution functions

We keep the same notations as in Section 2.6.2. We know that for x ≥ 0, ax(t) = P [At ≤ x],
ex(t) = P [Et ≤ x] are solutions of (h, F )-renewal equations, where

• In the case of ax(·):

h(t) = 1[0,x](t)
(
1− F (t)

)
(d.R.i. thanks to (2.84)).

• In the case of ex(·):
h(t) = F (t+ x)− F (t)(≥ 0), which is d.R.i. when µ <∞, because

h(t) =

non-increasing
↓︷ ︸︸ ︷

1− F (t) −
(
non-increasing

↓︷ ︸︸ ︷
1− F (t+ x)

)
and

∫ ∞

0

(
1− F (t)

)
dt

Remark 2.10 1)
= µ <∞,

∫ ∞

0

(
1− F (t+ x)

)
dt =

∫ ∞

x

(
1− F (s)

)
ds ≤ µ <∞,

so that with (2.85) and (2.86), we find that h is d.R.i. Note also that

∫ ∞

0
h(t) dt =

∫ x

0

(
1− F (t)

)
dt.

Thus, when F is non-arithmetic, we find that

lim
t→∞

ax(t) =
1

µ

∫ x

0

(
1− F (t)

)
dt = G∗(x) in the notation of (2.44) ;(2.95)

lim
t→∞

ex(t) =
1

µ

∫ ∞

0

(
F (t+ x)− F (t)

)
dt =

1

µ

∫ x

0

(
1− F (x)

)
dt = G∗(x).(2.96)
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In particular, when µ <∞, we see that when t tends to infinity, both At and Et converge
in distribution to a random variable with distribution function G∗.
(Incidentally, the statements (2.95), (2.96) hold even when µ =∞, because in fact

ex(t) = P [Et ≤ x] = P [Nt+x −Nt ≥ 1] ≤M(t+ x)−M(t)
(2.55)−→
t→∞

0, and

ax(t) = P [At ≤ x] ≤ P [Nt −Nt−2x ≥ 1] ≤M(t)−M(t− 2x)
(2.55)−→
t→∞

0

when µ =∞.)

2.9.2 Cycles of operation and repair of a machine

We keep the same notations as in Section 2.6.3. So the probability that the machine is
operational at time t is g(t) which is the solution of the (h, F )-renewal equation with

h(t) = P [U1 > t], which is d.R.i. when E[U1] <∞ (cf. (2.85)).

Therefore, when F is non-arithmetic and E[U1] <∞, we find that

(2.97) lim
t→∞

g(t) =
1

µ

∫ ∞

0
P [U1 > t] dt =

E[U1]

E[U1] + E[V1]
,

(µ
(2.68)
= E[U1]+E[V1] is the expectation of the duration of a cycle of operation and repair).

2.10 Renewal with defect

This corresponds to the case where the random variables (Ti)i≥1 are i.i.d., [0,∞]-valued
with P [T1 =∞] = 1− F (∞) > 0, and for t ∈ R, F (t) = P [T1 ≤ t]. Just as in (2.3), (2.4),
(2.8) one defines the renewal process with defect:

(2.98) Nt =
∑
k≥1

1{Sk ≤ t} = sup{n ≥ 0;Sn ≤ t}, for t ≥ 0,

where
Sn = T1 + T2 + · · ·+ Tn, when n ≥ 1, and S0 = 0,

as well as the corresponding renewal function:

(2.99) M(t) = E[Nt], for t ≥ 0.

The renewal equation

(2.100) g = h+ g ∗ F,

with F (∞) < 1F (∞) < 1F (∞) < 1, is called renewal equation with defect.
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Remark 2.27. The renewal equation with defect often occurs in practice when considering
equations of the type

g = h+ γ g ∗ F,

where F (·) is a distribution, with no defect (such that F (u) = 0, for u < 0, F (0) < 1, and
F (∞) = 1), and γ some parameter in (0, 1). �

Proposition 2.28. Let h(·) be a function vanishing on (−∞, 0), which is measurable and
locally bounded. There is a unique g measurable, locally bounded, vanishing on (−∞, 0),
solution of (2.100), namely:

(2.101) g = h+ h ∗M.

Proof. Just like the proof of (2.74).

Proposition 2.29. Let h(·) vanishing on (−∞, 0), be measurable and bounded with

(2.102) h(t) tending to h(∞) as t tends to infinity.

The unique measurable, locally bounded solution of (2.100) vanishing on (−∞, 0) satisfies

(2.103) lim
t→∞

g(t) =
h(∞)

1− F (∞)

def
= g(∞).

Proof.

(2.104) M(t) =
∞∑
k=1

F ∗k(t) =
∞∑
k=1

P [T1 + · · · + Tk ≤ t], for t ≥ 0.

Observe that

lim
t→∞

P [T1 + · · ·+ Tk ≤ t] = P [T1 + · · ·+ Tk <∞]

= P [Tℓ <∞, for 1 ≤ ℓ ≤ k] = F (∞)k.
(2.105)

Coming back to (2.104), it follows from monotone convergence that

(2.106) lim
t→∞

M(t) =M(∞)
def
=

∞∑
k=1

F (∞)k =
F (∞)

1− F (∞)
.

As a result we see that

g(t)
(2.101)
= h(t) +

∫ t

0
h(t− s) dM(s) = h(t) +

∫ ∞

0
1[0,t](s)h(t− s)︸ ︷︷ ︸

dM(s)

t→∞ ↓ (2.102)

h(∞)

and using dominated convergence and (2.102):

(2.107) lim
t→∞

g(t) = h(∞) + h(∞)

∫ ∞

0
dM(s) = h(∞)

(
1 +M(∞)

) (2.106)
=

h(∞)

1− F (∞)
,

and this proves (2.103).
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Sometimes, if for some α > 0,

(2.108)

∫ ∞

0
eαxdF (x) = 1

(we recall that on the interval of values of α where
∫∞
0 eαxdF (x) < ∞, the function

α→ log(
∫∞
0 eαxdF (x)) is convex, as follows from Hölder’s inequality), one can go further

than (2.103). Indeed, if h is as in (2.102) and g as in (2.103), we find that for t ≥ 0:

g(t) − g(∞) = h(t) +

∫ t

0
g(t− s) dF (s)− g(∞)

= h(t) +

∫ t

0

(
g(t− s)− g(∞)

)
dF (s)− g(∞)

(
1− F (t)

)

(2.107)
= h(t)− h(∞)

(1− F (t))
1− F (∞)

+

∫ t

0

(
g(t− s)− g(∞)

)
dF (s).

(2.109)

If we multiply both members of (2.109) by eαt, with α as in (2.108) and set

g̃α(t) =
(
g(t)− g(∞)

)
eαt1{t ≥ 0},

h̃α(t) =
(
h(t)− h(∞)

1− F (t)
1− F (∞)

)
eαt1{t ≥ 0},

dFα(x) = eαxdF (x),

we obtain:

g̃α(t) = h̃α(t) +

∫ t

0
g̃α(t− s) dFα(s), for t ≥ 0

= 0, for t < 0.

(2.110)

In other words: g̃α solves the (h̃α, Fα)-renewal equation. We can then apply Smith’s key
renewal theorem to find

Proposition 2.30. When h is as in (2.102), g as in (2.101), and for some α > 0,∫∞
0 eαxdF (x) = 1, Fα is non-arithmetic and h̃α d.R.i., then

(2.111) lim
t→∞

(
g(t)− g(∞)

)
eαt =

1∫∞
0 xeαxdF (x)

∫ ∞

0
h̃α(u) du.

Complement: 1) A beautiful application of the above result concerns the so-called risk-
process, cf. [12], pp. 205 and 259. Claims arrive at an insurance company according to a
Poisson process of rate λ > 0, and the claims are marks of this Poisson process given by
i.i.d. variables X1,X2, . . . ,Xn, . . . , which are non-negative.

The capital at time 0 of the insurance company is x, and it receives ct premiums by
time t. So the fortune at time t of the insurance company is

(2.112) f(t) = x+ ct− ∑
k≥1

Xk 1{Sk ≤ t}.
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An important quantity is the so-called probability of no-ruin of the insurance company:

(2.113) R(x) = P [f(t) > 0, for all t > 0].

In the above reference it is shown that when

(2.114)
λE[X1] < c, then: R(∞) = 1, R(0) = 1− λ

c
E[X1]

R(t) = R(0)
(
1 +M(t)

)
, t ≥ 0,

with M(t) the defective renewal function attached to

(2.115) F (t) =

∫ t

0

λ

c
P [X1 > u] du.

One can then use (2.111) to find a rate of convergence to zero of 1 − R(t) as t → ∞. If
α > 0 can be chosen such that λ

c

∫∞
0 eαxP [X1 > x] dx = 1, then

1−R(t) ∼
t→∞

e−αt

αλ

c

∫ ∞

0
xeαxP [X1 > x] dx

.

2) In the case of an equation,

(2.116) g = h+ g ∗ F,

where h, g vanish on (−∞, 0), and F (u) = 0, u < 0, with F (0) < 1 < F (∞) <∞F (0) < 1 < F (∞) <∞F (0) < 1 < F (∞) <∞, one
can choose α < 0α < 0α < 0 so that ∫ ∞

0
eαxdF (x) = 1.

Then, multiplying both members of (2.116) with eαx, one obtains the equation

gα = hα + gα ∗ Fα, where

hα(t) = eαth(t),

gα(t) = eαtg(t),

dFα(t) = eαtdF (t),

(2.117)

which is a usual renewal equation. �
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3 Discrete time Markov chains

We consider the state space

(3.1) E: an at most denumerable non-empty set.

We begin with the discussion of discrete time Markov chains on E.

Definition 3.1. A sequence (Xn)n≥0 of random variables with values in E defined on
some (Ω,A, P ) is a discrete time Markov chain with state space E when:

(3.2) E[f(Xn+1) |X0,X1, . . . ,Xn]
P -a.s.
= E[f(Xn+1) |Xn], for n ≥ 0,

for any bounded function f : E → R.

Intuitively:

The best prediction of the future of the sequence (Xn) knowing
its past only relies on the information contained in the present.

Of special interest to us will be the situation when the chain is time-homogeneous and we
have a fixed transition probability on E:

(3.3)

(rx,y)x,y∈E , with rx,y ≥ 0, for x, y ∈ E,
∑
y∈E

rx,y = 1, for x ∈ E.
տ

“time-homogeneous”

In this case one has

Definition 3.2. A sequence (Xn)n≥0 of random variables with values in E on some
(Ω,A, P ) is a Markov chain with state space E and transition probability (rx,y)x,y∈E when:

(3.4) E[f(Xn+1)|X0, . . . ,Xn]
P -a.s.
=

∑
y∈E

rXn,yf(y),

for all n ≥ 0, and bounded functions f : E → R.

Given the transition probability (rx,y) on E one defines

(3.5)

rx,y(n) for n ≥ 0, x, y in E, via:

ւ
Kronecker symbol

rx,y(0) = δx,y, rx,y(1) = rx,y, and by induction:
rx,y(n+ 1) =

∑
z∈E

rx,z(n) rz,y .
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Proposition 3.3. Given a Markov chain (Xn)n≥0, with state space E, transition proba-
bility (rx,y), and initial distribution

(3.6) µ(x) = P [X0 = x], x ∈ E,

one has

rx,y(n+m) =
∑
z∈E

rx,z(n) rz,y(m), for n,m ≥ 0, x, y ∈ E,(3.7)

(the so-called Chapman-Kolmogorov equation)

rx,y(n) = (Rn1{y})(x), n ≥ 0, x, y ∈ E, with(3.8)

R the linear operator on the set of bounded functions on E

defined by Rf(x) =
∑
z∈E

rx,z f(z) for f bounded function on E,

for x0, x1, . . . , xn ∈ E, P [X0 = x0,X1 = x1, . . . ,Xn = xn] =(3.9)

µ(x0) rx0,x1rx1,x2 . . . rxn−1,xn ,

for y ∈ E,n ≥ 0, P [Xn = y] = (µRn)(y), with(3.10)

(µRn)(y)
def
=

∑
z
µ(z)(Rn1{y})(z).

Proof.

• (3.7): One fixes n and proves (3.7) by induction on m.

• (3.8): The claim holds for n = 0 and n = 1, and then by induction

rx,y(n+ 1)
(3.5)
=

∑
z∈E

rx,z(n) rz,y = [Rn(R 1{y})](x)

= (Rn+11{y})(x),

and (3.8) follows.

• (3.9): The claim holds for n = 0, and then for n ≥ 1,

P [x0 = x0, . . . ,Xn = xn] = E
[
P [Xn = xn |X0, . . . ,Xn−1],
X0 = x0, . . . ,Xn−1 = xn−1

]
(3.4)
= E[rXn−1,xn ,X0 = x0, . . . ,Xn−1 = xn−1] = rxn−1,xnP [X0 = x0, . . . ,Xn−1 = xn−1]

induction
=

(
µ(x0)rx0,x1 . . . rxn−2,xn−1

)
rxn−1,xn ,

and this proves (3.9).
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• (3.10): The claim holds for n = 0, and then for n ≥ 1:

P [Xn = y] = E
[
P [Xn = y |X0, . . . ,Xn−1]

] (3.4)
= E[rXn−1,y] =

∑
z∈E

P [Xn−1 = z] rz,y
induction

=
(3.8)

∑
x,z
µ(x) rx,z(n − 1) rz,y

(3.5)
=

∑
x
µ(x) rx,y(n)

(3.8)
= (µRn)(y),

and this proves (3.10).

One can in fact construct a canonical homogeneous Markov chain as follows. One
introduces

(3.11)

Ω0 = EN = {sequences (xi)i≥0, with xi ∈ E, for all i ≥ 0},
Xn(ω)

def
= ω(n), n ≥ 0, the canonical coordinates,

A0 = σ(X0,X1, . . . ), the canonical σ-algebra,

Fn = σ(X0,X1, . . . ,Xn), n ≥ 0, the canonical filtration.

Proposition 3.4. Given (rx,y) transition probability on E, for each z ∈ E, there is a
unique probability Pz on (Ω0,A0), under which the (Xn)n≥0 are a Markov chain on E
with transition probability (rx,y) and initial distribution δz (= point mass at z). Moreover,
for µ probability on E, under

(3.12) Pµ
def
=

∑
x∈E

µ(x)Px,

(Xn)n≥0 is a Markov chain on E with transition probability (rx,y) and initial distribution
µ (i.e. X0 has law µ under Pµ).

Proof. First given z ∈ E, with the help of (3.9), we only need to show that there is a
unique probability Pz on (Ω0,A0) such that for any n ≥ 0, x0, x1, . . . , xn,

Pz [X0 = x0,X1 = x1, . . . ,Xn = xn] = δz(x0) rx0,x1 , . . . , rxn−1,xn(3.13)

(such a probability then automatically makes (Xn)n≥0, a Markov chain

with transition (rx,y) and initial law δz).

• The uniqueness of Pz follows from Dynkin’s lemma, cf. [12], p. 41.

• The existence of Pz:

Denote by Q the Lebesgue measure on ((0, 1),B(0, 1)), and for each x ∈ E, let

Φ(x, ·) be a measurable function (0, 1)→ E under which Q(3.14)

has image measure rx,· on E,

(this is easily done by partitioning (0, 1) into intervals with respective

lengths rx,y, with y ∈ E, on which the function Φ(x, ·) takes the value y).

Consider now on some probability space (Ω̃, Ã, P̃ ) an i.i.d. sequence Ui, i ≥ 1, of (0, 1)-
valued uniformly distributed variables and set

(3.15) X̃0 = z, X̃1 = Φ(z, U1), X̃2 = Φ(X̃1, U2), . . . , X̃n+1 = Φ(X̃n, Un+1), . . . .
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Then for any n ≥ 0, x0, . . . , xn ∈ E, one has

P̃ [X̃0 = x0, X̃1 = x1, . . . , X̃n = xn] = δz(x0) rx0,x1 , . . . , rxn−1,xn ,

as follows from induction from (3.14) and the fact that the variables Ui, i ≥ 1 are i.i.d.
uniformly distributed on (0, 1).

Then Pz
def
= the law of (X̃0, X̃1, . . . , X̃n . . . ) on (Ω0,A0), satisfies (3.13).

• To check the last statement, let µ be a probability on E, then for f bounded E → R and
n ≥ 0, x0, x1, . . . , xn in E,

Eµ[f(Xn+1), X0 = x0, . . . ,Xn = xn]
(3.12)
=

∑
x∈E

µ(x)Ex[f(Xn+1),X0 = x0, . . . ,Xn = xn],

↑
Pµ-expectation and since (Xn)n≥0 is a Markov chain under Px,

=
∑
x∈E

µ(x)Px[X0 = x0, . . . ,Xn = xn] (Rf)(xn)

=
∑
x∈E

µ(x)Ex[X0 = x0, . . . ,Xn = xn, Rf(Xn)]

= Eµ[(Rf)(Xn), X0 = x0, . . . ,Xn = xn].

The Markov property of (Xn)n≥0 under Pµ follows. Moreover, Pµ[X0 = x0] = µ(x0), and
µ is the initial distribution (under Pµ).

3.1 Examples

3.1.1 Simple random walk on Zd

E = Zd, d ≥ 1, the corresponding transition probability is

rx,y =
1

2d
, if |y − z| = 1, x, y in Zd

= 0, otherwise.
(3.16)

x

Fig. 3.1
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3.1.2 Reflected random walk

pppp qqqq

0

1

1 2 3 4

Fig. 3.2

The state space is E = N, p, q > 0 are such that p+ q = 1, and the transition probability
is:

rx,y = 1, if x = 0, y = 1,

= p, if x ≥ 1, y = x+ 1,

= q, if x ≥ 1, y = x− 1,

= 0, otherwise.

(3.17)

3.1.3 Galton-Watson chain

The state space is E = N, we have a probability π on N with π(0) 6= 1, π(1) 6= 1, so that
each individual has k descendants with probability π(k).

The chain describes the evolution of a population generation after generation, with the
assumption that each individual in the population has a certain number of descendants,
which has distribution π, independently from the other individuals.

The transition probability of the chain is:

rx,y = 1, if x = 0, y = 0,
ւ

convolution

= π∗x(y), if x ≥ 1,
(
π∗x

def
= π ∗ π ∗ · · · ∗ π

)

տ
x times

ր
= 0, if x = 0, y 6= 0.

(3.18)

3.1.4 Ehrenfest model of diffusion

A B

N = 5

Fig. 3.3

N molecules are distributed in two containers A and B, and at each step a molecule is
chosen at random and placed in the other container. The chain describes the number of
molecules in container A.
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The state space is E = {0, 1, 2, . . . , N}, and the transition probability is

(3.19)

rx,y = 1− x

N
, if x < N and y = x+ 1,

=
x

N
, if x > 0 and y = x− 1,

= 0, otherwise.

3.1.5 Residual waiting time

π is a probability on N\{0}, and the state space is E = N\{0}.

π(1)

π(2)
π(3)

π(4)
π(5)

1
111111

2 3 4 5

Fig. 3.4

The transition probability is

(3.20)

rx,y = π(y), if x = 1 and y ≥ 1,

= 1, if x > 1 and y = x− 1,

= 0, otherwise.

The chain describes the excess process Et, at integer times t ∈ N, if the inter-arrival times
(Ti)i≥1 have distribution π (the initial distribution of the chain is π)

T1 T2

S1 S2 S30

En

n

Fig. 3.5
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3.2 Markov and strong Markov property

We consider the canonical shift on Ω0, see (3.11),

θn: Ω0 → Ω0, for n ≥ 0, defined via θn(ω)(·) = ω(n+ ·),
for ω ∈ Ω0, (the “trajectory ω(·) shifted by n units of time”).(3.21)

Proposition 3.5. (simple Markov property)

If µ is a probability on E, Y is a bounded A0-measurable variable on Ω0, then for n ≥ 0,

Eµ[Y ◦ θn︸ ︷︷ ︸
↑

|Fn]
Pµ-a.s.

= EXn [Y ], (see (3.11), (3.12) for notation).(3.22)

function of the “future after time n”

Proof. It suffices to prove (3.22) for Y = 1A, with A ∈ A0. Indeed, (3.22) then follows
for linear combinations of indicator functions and then by monotone convergence for Y ≥
0, bounded and A0-measurable, and then for general Y as claimed in (3.22) by taking
differences.

Since Fn is generated by an at most countable partition of Ω0 into sets {X0 = x0,X1 =
x1, . . . ,Xn = xn}, with x0, . . . , xn in E, we only need to prove that for x0, . . . , xn in E:

(3.23) Eµ[1A ◦ θn;X0 = x0, . . . ,Xn = xn] = Pµ[X0 = x0, . . . ,Xn = xn]Pxn [A].

When A = {X0 = y0, . . . ,Xm = ym}, one has

1A ◦ θn = 1{Xn = y0,Xn+1 = y1, . . . ,Xn+m = ym},
and (3.23) follows from (3.9).

The class of sets A, which are either empty or of the above form is a π-system generating
A0. By Dynkin’s lemma, see [12], p. 41, the claim (3.23) follows for general A ∈ A0, and
this concludes the proof of (3.22).

We will now replace n in (3.22) with an (Fn)-stopping time, to obtain the so-called
strong Markov property. We recall that for N an (Fn)-stopping time (i.e. N is N ∪ {∞)-
valued and {N = n} ∈ Fn, for each n ≥ 0), one defines the σ-algebra FN of the “past of
N”, via:

(3.24) FN
def
= {A ∈ A0; A ∩ {N = n} ∈ Fn, for each n ≥ 0}.

Theorem 3.6. (strong Markov property)

Let N be an (Fn)-stopping time, Y a bounded A0-measurable variable, µ a probability on
E, then one has:

Eµ[Y ◦ θN | FN ]
Pµ-a.s.

= EXN
[Y ] on {N <∞},(3.25)

↑
FN -measurable
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(here Y ◦ θN is understood as Y ◦ θN(ω)(ω), if N(ω) < ∞, and 0 otherwise, and EXN
[Y ]

is understood as EXN(ω)(ω)[Y ], when N(ω) <∞, and 0 otherwise).

Proof. Observe that on {N = n}, EXN
[Y ] = EXn [Y ]← Fn-measurable, and hence

(3.26) XN is FN -measurable.

Moreover, for A ∈ FN , we have

(3.27)

Eµ[Y ◦ θN ; A ∩ {N <∞}] = ∑
n≥0

Eµ[Y ◦ θN ; A ∩ {N = n}] =

simple Markov property
ւ

∑
n≥0

Eµ

[
Y ◦ θn; A ∩ {N = n}︸ ︷︷ ︸

∈Fn

] (3.22)
=

∑
n≥0

Eµ[EXn [Y ]; A ∩ {N = n}] =

Eµ[EXN
[Y ]; A ∩ {N <∞}], and this proves (3.25).

3.3 Recurrence and transience

We consider the canonical Markov chain with state space E and transition probability
(rx,y)x,y∈E , cf. (3.11), (3.12). Given x ∈ E, we define the hitting time of x:

(3.28) H̃x = inf{n ≥ 1; Xn = x} ≤ ∞ .

It is an (Fn)-stopping time (indeed one has:

{H̃x = k} = {X1 6= x, . . . ,Xk−1 6= x, Xk = x} ∈ Fk, for k ≥ 1, and {H̃x = 0} = φ ∈ F0.)

It is also useful to consider the entrance time in x ∈ E:

(3.29) Hx = inf{n ≥ 0; Xn = x} ≤ ∞ .

It is also an (Fn)-stopping (via similar arguments as below (3.28)). The difference between
hitting and entrance times only has to do with whether the state of the chain at time 0 is
taken into account or not.

Definition 3.7.

(3.30) ρx,y
def
= Px[H̃y <∞], for x, y ∈ E.

A state x ∈ E is said recurrent if

(3.31) ρx,x = 1 .

It is said transient if

(3.32) ρx,x < 1.
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In general it is not easy to decide whether a state is recurrent or transient. Given
x ∈ E, one defines the successive times of visit of the chain to x, H̃n

x , n ≥ 0, via:

H̃0
x = 0, H̃1

x = H̃x ≤ ∞, and for n ≥ 1,

H̃n+1
x = H̃n

x + H̃x ◦ θH̃n
x
≤ ∞ (understood as +∞ on {H̃n

x =∞}).
(3.33)

Proposition 3.8. (x, y ∈ E)

Px[H̃
n
y <∞] = ρx,y, if n = 1,

ρx,y ρ
n−1
y,y , if n > 1.

(3.34)

Proof. For n = 1, this is the definition (3.30). For n > 1, we write:

Px[H̃
n
y <∞]

(3.33)
= Px[H̃

n−1
y <∞ and H̃y ◦ θH̃n−1

y
<∞],

applying the strong Markov property (3.25) we find

= Ex

[
H̃n−1

y <∞, PXH̃n−1
y︸ ︷︷ ︸

[H̃y <∞]
] (3.30)

= ρy,y Px[H̃
n−1
y <∞]

ր
induction

= ρx,y ρ
n−1
y,y ,

on {H̃n−1
y < ∞},= y

and this proves (3.34).

Remark 3.9. (link with renewal processes)

Note that as a consequence of the strong Markov property, under Px,

(3.35) Sn
def
= H̃n

x , n ≥ 0,

has same distribution as the sum

T1 + · · · + Tn, when n ≥ 1, and equals 0, when n = 0,

for i.i.d. variables (Ti)i≥1, with values in N ∪ {∞} having same distribution as H̃x under
Px. So the counting function

(3.36) Nt =
∑
k≥1

1{Sk ≤ t} = sup{n ≥ 0; Sn ≤ t}, t ≥ 0,

is a renewal process, which is defective when x is transient, and has no defect when x is
recurrent. �

Given a state x ∈ E, we define

(3.37) Nx =
∑
k≥1

1{Xk = x} = ∑
n≥1

1{H̃n
x <∞}.
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Proposition 3.10. (y ∈ E)

If y is recurrent, then

(3.38) Py-a.s., Ny =∞.
If y is transient, then for x ∈ E,

(3.39) Ex[Ny] =
ρx,y

1− ρy,y
<∞.

Proof.

• (3.38): With (3.34) we see that Py[H̃
n
y <∞] = 1, for n ≥ 1, and (3.38) follows.

• (3.39):

Ex[Ny] =
∑
n≥1

Px[Ny ≥ n︸ ︷︷ ︸
={H̃n

y <∞}

] =
∑
n≥1

Px[H̃
n
y <∞]

(3.34)
=

∑
n≥1

ρx,y ρ
n−1
y,y =

ρx,y
1− ρy,y

<∞ .

One immediate consequence is the following

Corollary 3.11.

(3.40) When E is finite, at least one y ∈ E is recurrent.

Proof. Indeed, otherwise all y ∈ E are transient and for any x ∈ E

Ex

[ ∑
y∈E

Ny

] (3.39)
=

∑
y∈E

ρx,y
1− ρy,y

(E finite)
<∞ .

On the other hand:
∑
y∈E

Ny
(3.37)
=

∑
y∈E

∑
k≥1

1{Xk = y} = ∑
k≥1

1 =∞,

a contradiction.

We will now devise a decomposition of the state space. To this end we will first
see that “anything that can be reached from a recurrent state is recurrent as well”.

x

recurrent

Fig. 3.6
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Proposition 3.12.

(3.41)
If x is recurrent and ρx,y > 0, then y is recurrent and ρy,x = 1
(and therefore, switching the role of x and y, ρx,y = 1 as well).

Proof.

• We show that ρy,x = 1.

We assume y 6= x, otherwise this is clear (since x is recurrent, cf. (3.31)). Let k ≥ 1 be
the smallest integer such that Px[Xk = y] > 0. Then

0 < Px[Xk = y] =
∑

x1,...,xk−1∈E
Px[X1 = x1, . . . ,Xk−1 = xk−1,Xk = y]︸ ︷︷ ︸

↑ (3.9)

.(3.42)

rx,x1 ... rxk−1,y

One of the above terms is > 0, and since k is minimal, the corresponding x1, . . . , xk−1 are
different from x and y:

(3.43) rx,x1 rx1,x2 . . . rxk−1,y > 0, for some x1, . . . , xk−1 different from x, y.

Since x is recurrent, we find that

different from x

ւ↓ ց
0 = Px[H̃x =∞] ≥ Px[X1 = x1, . . . ,Xk = y, H̃x ◦ θk =∞]

Markov,(3.22)
= rx,x1 , . . . , rxk−1,y Py[H̃x =∞]︸ ︷︷ ︸

↑ 1−ρy,x

and therefore we find that

(3.44) ρy,x = 1.

• We show that y is recurrent (recall y 6= x, otherwise this is trivial). Since ρy,x = 1, there
is an ℓ ≥ 1, such that Py[Xℓ = x] > 0. Then for n ≥ 1, and k as above (3.42) we find

Py[Xℓ+n+k = y] ≥ Py[Xℓ = x, Xℓ+n = x, Xℓ+n+k = y]

with the Markov property at time ℓ+ n, cf. (3.22), this equals

= Py[Xℓ = x, Xℓ+n = x] Px[Xk = y]
(3.22) at time ℓ

=

Py[Xℓ = x] Px[Xn = x] Px[Xk = y].
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Therefore with the notation of (3.37) we find

Ey[Ny] ≥
∑
n≥1

Py[Xℓ+n+k = y] ≥ Py[Xℓ = x] Px[Xk = y]
∑
n≥1

Px[Xn = x]

= Py[Xℓ = x]︸ ︷︷ ︸
>0

Px[Xk = y]︸ ︷︷ ︸
>0

Ex[Nx]︸ ︷︷ ︸
=∞, (recurrent)

=∞.(3.45)

In view of (3.39) this show that y is recurrent.

Example 3.13. Consider the Galton-Watson chain (see Section 3.1.3), and assume that
the probability π on N describing the number of descendants of an individual satisfies:

(3.46) π(0) > 0.

Under (3.46) all states x ≥ 1 are transient and 0 is the only recurrent state. Indeed, 0 is
clearly recurrent, cf. (3.18), and for x ≥ 1, we have

ρx,0 ≥ π(0)x > 0 (“none of the x individuals has a descendant”).

Thus if x is recurrent, then ρ0,x
(3.41)
= 1, which is a contradiction since ρ0,x = P0[H̃x <

∞] = 0, in view of (3.18). �

We continue the discussion of recurrence and transience and will introduce a certain
decomposition of the state space.

Definition 3.14. Two states x, y ∈ E are communicating (one writes x↔ y), if

(3.47) Px[Hy <∞] > 0 and Py[Hx <∞] > 0,

(in other words: x↔ y means x = y or ρx,y ρy,x > 0).

Note that x↔ y, x, y ∈ Ex↔ y, x, y ∈ Ex↔ y, x, y ∈ E, is an equivalence relation on E. The only point to
check is the transitivity, which follows from the fact that for x, y, z ∈ E,

Px[Hz <∞] ≥ Px[Hy <∞ and Hz ◦ θHy <∞]
(3.25)
= Px[Hy <∞]Py[Hz <∞].

When there is only one equivalence class in E, the chain is called irreducible, (i.e. for
all x, y ∈ E, x↔ y).

Proposition 3.15. (state space decomposition)

One can partition E into

(3.48) E = T ∪R1 ∪R2 ∪ . . . ,

where T is the collection of transient states and each Ri is an equivalence class for “↔”
of recurrent states.
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Proof. The only point to observe is that an equivalence class for “↔” is either included

in T or in T c def
= R (the set of recurrent states), as follows from (3.41).

Remark 3.16.

1) It follows from (3.41) that for x ∈ Ri (one of the recurrent classes) one has

(3.49) Px[Xn ∈ Ri, for all n ≥ 0] = 1

(because for x recurrent ρx,y > 0
(3.41)
=⇒ x↔ y). Hence, when the process starts in Ri, it

remains in Ri for ever.

2) When the process starts in T it may remain in T or at some point enter one of the Ri

(which it then never leaves).
�

Example 3.17. Consider again the Galton-Watson chain, cf. (3.18), and assume that

(3.50) 0 < π(0) < 1, and m =
∑
k≥0

kπ(k) ∈ (1,∞), i.e. the “supercritical case”.

Then, it is known (see for instance [14], p. 101) that

(3.51) Px[Xn 6= 0, for all n ≥ 0] > 0, for any x ≥ 1.

At the same time, we have seen that ρx,0 > 0, cf. Example 3.13. This is a situation where

E = N is partitioned into E = T ∪R, with T = N\{0}, R = {0}.
↑ ր
R1 called “absorbing state”

When starting in T , the chain may either remain for ever in T , or at some point reach
R = {0}. �

Definition 3.18. A recurrent state x ∈ E, is called positive recurrent if

(3.52) Ex[H̃x] <∞,

it is called null recurrent if

(3.53) Ex[H̃x] =∞.

(To explain the terminology, recall that in view of the link with renewal processes in (3.36)
and the law of large numbers in (2.34), when x is recurrent, then one has

(3.54)
Px-a.s.,

1

n

n∑
k=1

1{Xk = x} −→
n→∞

1

Ex[H̃x]
> 0, if x is positive recurrent

= 0, if x is null recurrent .)
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3.4 Stationary distribution

A probability π on E is called a stationary distribution of the Markov chain with transition
probability (rx,y) if

(3.55) for all y ∈ E, π(y) =
∑
x∈E

π(x) rx,y.

Remark 3.19. Note that π being a stationary distribution is equivalent to:

(3.56)

θn ◦ Pπ︸ ︷︷ ︸ = Pπ, for any n ≥ 0.

տ
image of Pπ under θn (on Ω0), in the notation of (3.11)

Indeed, (3.56) implies (3.55) because applying (3.56) with n = 1

π(y) = Pπ(X0 = y)
(3.56)
= θ1 ◦ Pπ[X0 = y] = Pπ[X0 ◦ θ1 = y]

= Pπ[X1 = y]
(3.10)
=

∑
x∈E

π(x) rx,y.

Conversely, (3.55) implies (3.56) because for any A ∈ A0

θ1 ◦ Pπ[A] = Eπ[1A ◦ θ1] = Eπ

[
Eπ[1A ◦ θ1 | F1]

] (3.22)
= Eπ

[
PX1 [A]

]

(3.10)
=

(swapping
summations)

∑
y∈E

∑
x∈E

π(x) rx,y Py[A]
(3.55)
=

∑
y∈E

π(y)Py[A] = Pπ[A].

Since θn = (θ1)
n, and we have θ1 ◦ Pπ = Pπ, the identity (3.56) follows. Thus (3.55) and

(3.56) are equivalent.

Thus (3.56) provides an interpretation for the terminology “stationary distribution”:
such an initial distribution π will make Pπ invariant under the shifts θn, n ≥ 0. �

We continue our discussion of stationary distributions of Markov chains. They play
an important role in the study of the asymptotic behavior of the chain.

A special class of stationary distributions comes in the next definition.

Definition 3.20. A probability π on E is called a reversible distribution of the Markov
chain with transition probability (rx,y) when

(3.57) π(x) rx,y = π(y) ry,x, for all x, y ∈ E;

(this is called the detailed balance condition).

Proposition 3.21.

(3.58) A reversible distribution is a stationary distribution.
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Proof. Let π be a reversible distribution, then for y ∈ E,

∑
x∈E

π(x) rx,y
(3.57)
=

∑
x∈E

π(y) ry,x = π(y)
∑
x∈E

ry,x

︸ ︷︷ ︸
= π(y),

տ
1

i.e. π satisfies (3.55).

Remark 3.22. The detailed balance condition (3.57) is easier to check than (3.55) (be-
cause the condition is local in nature, in the sense that it involves only two states x, y at
a time, as opposed to (3.55), which may involve many states at a time). The terminology
“detailed balance” comes from the fact that when π is reversible

π(x) rx,y = Pπ[X0 = x,X1 = y]︸ ︷︷ ︸
“flux from x to y

under the θ-invariant

measure Pπ”

= Pπ[X0 = y,X1 = x]︸ ︷︷ ︸
“flux from y to x

under the θ-invariant

measure Pπ”

= π(y) ry,x .

�

Example 3.23. Consider the Markov chain on E = {1, . . . N}, with transition probability

rx,y = 1, if x = N , y = 1

1, if x < N , y = x+ 1

0, otherwise.

1

2

3

N

Fig. 3.7

Note that rx,y ry,x ≡ 0, and this Markov chain cannot have a reversible distribution. On
the other hand, the uniform distribution on E:

π(x) =
1

N
, x ∈ {1, . . . , N},

is clearly stationary.
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Example 3.24. Reflected random walk (cf. (3.17)):

We look for a reversible distribution π so that:

(3.59) π(0) = qπ(1), and for x ≥ 1, pπ(x) = qπ(x+ 1).

Necessarily, we have for x ≥ 1:

π(x+ 1) =
(p
q

)
π(x)

induction
=

(p
q

)x
π(1) =

(p
q

)x 1

q
π(0), and

π(1) =
1

q
π(0).

As a result:

when p < q, we can define π(0) = c, π(x) =
c

q

(p
q

)x−1
, for x ≥ 1,(3.60)

with c the constant defined by

1 = c
(
1 +

1

q

∑
n≥0

(p
q

)n)
= c

(
1 +

1

q

1

1− p
q

)
= c

(
1 +

1

q − p
)
, i.e.

c =
(
1 +

1

q − p
)−1

=
q − p
2q

(recall that p+ q = 1).(3.61)

On the other hand, when

(3.62) p ≥ q,

one can prove with the help of results discussed below (see Proposition 3.26) that the
Markov chain has no stationary distribution.

Example 3.25. Ehrenfest model of diffusion (cf. Section 3.1.4):

The state space is E = {0, 1, . . . , N}.
We consider the binomial distribution with parameter N and p = 1

2 , i.e.

(3.63) π(x) =

(
N

x

)
2−N , 0 ≤ x ≤ N.

(Recall the total number of molecules is N , and the chain records the number of molecules
in the container A. The choice of π in (3.63) corresponds to deciding at time 0 in an i.i.d.
fashion for each molecule to place it with equal probability in container A or in container
B.)

π is a reversible distribution for the Markov chain with(3.64)

transition probability (3.19).
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Indeed, we only need to check (3.57) for 0 ≤ x < y = x+ 1 ≤ N . Observe that

π(x) rx,x+1 = 2−N

(
N

x

)(
1− x

N

)
= 2−N N !

x!(N − x)!
N − x
N

= 2−N

(
N − 1

x

)
,

and that

π(x+ 1) rx+1,x = 2−N

(
N

x+ 1

)
x+ 1

N
= 2−N N !

(x+ 1)!(N − 1− x)!
x+ 1

N
= 2−N

(
N − 1

x

)
,

and this proves (3.64).

We will now see that a stationary distribution can only give positive mass to positive
recurrent states, cf. (3.52).

Proposition 3.26. Let π be a stationary distribution, then for x ∈ E,

(3.65) π(x) > 0 implies that x is positive recurrent.

Proof.

(3.66) π(x)
(3.56)
=

1

n

n∑
k=1

Pπ[Xk = x] = Eπ

[ 1
n

n∑
k=1

1{Xk = x}
]
.

We will now introduce a lemma that will also be useful later.

Lemma 3.27. (this does not assume the existence of π).

(3.67) Ey

[ 1
n

n∑
k=1

1{Xk = x}
]
−→
n→∞

ρy,x

Ex[H̃x]
, for x, y ∈ E.

(3.68)

Ey

[ 1
n

n∑
k=1

1{Xk = x}
]
= Ey[H̃x <∞,

1

n

n∑
k=1

1{Xk = x}
]
=

∑
m≥1

Ey

[
H̃x = m,

1

n

( m∧n∑
k=1

1{Xk = x}
︸ ︷︷ ︸

+
( (n−m)+∑

ℓ=1

1{Xℓ = x}
)
◦ θm

)]

տ
1{m≤n}

Markov property (3.22)
at time m

=

1

n
Py[H̃x ≤ n]

︸ ︷︷ ︸
↓ n→∞

0

+
∑
m≥1

Py[H̃x = m]Ex

[ 1

n

(n−m)+∑
ℓ=1

1{Xℓ = x}
︸ ︷︷ ︸

]
.

n → ∞ ↓ (3.54) when x recurrent

(3.39) when x transient

Ex[H̃x]
−1
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As a result, using dominated convergence, we find that

Ey

[ 1
n

n∑
k=1

1{Xk = x}
]
−→
n→∞

Py[H̃x <∞]
1

Ex[H̃x]
,

and this proves (3.67).

Coming back to (3.66), we see using dominated convergence that

π(x) =
∑
y∈E

π(y) Ey

[ 1
n

n∑
k=1

1{Xk = x}
]

︸ ︷︷ ︸
≤1

−→
n→∞

∑
y∈E

π(y) ρy,x Ex[H̃x]
−1

= Pπ[H̃x <∞]Ex[H̃x]
−1.

(3.69)

However, when x is transient or null recurrent Ex[H̃x] =∞, and hence π(x) = 0.

Theorem 3.28. Consider an irreducible Markov chain on E. One has the equivalences

some x ∈ E is positive recurrent,(3.70)

all x ∈ E are positive recurrent,(3.71)

there is a stationary distribution.(3.72)

Furthermore, if one of the above equivalent conditions holds, then

(3.73) π(x) =
1

Ex[H̃x]
(> 0), x ∈ E, is the unique stationary distribution.

• (3.70) =⇒ (3.71):

Let x0 ∈ E be a positive recurrent state. From (3.41) or (3.48) we know that all states in
E are recurrent and communicating. Set for x ∈ E,

ν(x)

well-defined by
(3.67)
= lim

n→∞
Ez

[ 1
n

n∑
k=1

1{Xk = x}
]

(3.67)
= Ex[H̃x]

−1 (recall ρz,x = 1).
ր

arbitrary z ∈ E

(3.74)

From Fatou’s lemma, we know that

∑
x∈E

ν(x) ≤ 1 = lim
n

∑
x∈E

Ez

[ 1
n

n∑
k=1

1{Xk = x}
]

︸ ︷︷ ︸
.

տ
=1

(3.75)
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Since we have for any z ∈ E

Ez

[ 1

n+ 1

n+1∑
k=1

1{Xk = x}
]

︸ ︷︷ ︸
n→∞ ↓

=
1

n+ 1

n+1∑
k=1

Pz[Xk = x]

ν(x)
=

1

n+ 1

n+1∑
k=1

∑
y∈E

Pz[Xk−1 = y,Xk = x]

Markov
property

=
1

n+ 1

n+1∑
k=1

∑
y∈E

Pz[Xk−1 = y] ry,x =
∑
y∈E

Ez

[ 1

n+ 1

n∑
k=0

1{Xk = y}
]

︸ ︷︷ ︸
n→∞ ↓ (3.74)

ry,x,

ν(y)

(3.76)

we can again apply Fatou’s lemma and find:

(3.77) ν(x) ≥ ∑
y∈E

ν(y) ry,x, for all x ∈ E.

Summing over x in E we obtain:
∑
x∈E

ν(x) ≥ ∑
y∈E

ν(y)
∑
x∈E

ry,x =
∑
y∈E

ν(y),

and in view of (3.75), we see that (3.77) has to be an equality:

(3.78) ν(x) =
∑
y∈E

ν(y) ry,x, for all x ∈ E.

Assume that x is a null recurrent state. Since ρx0,x = 1, as in (3.42), we can find

x0, x1, . . . , xn = x with rxi,xi+1 > 0, 0 ≤ i < n. Since ν(x)
(3.74)
= Ex[H̃x]

−1 = 0, it
follows from (3.77) with x in place of x that ν(xn−1) = 0 and by induction that

ν(x) = ν(xn−1) = · · · = ν(x0) = 0, a contradiction since x0 is positive recurrent.

• (3.71) =⇒ (3.72):

We see that ν in (3.74) has a positive mass ≤ 1, and it satisfies (3.78). As a result

π =
1∑

x∈E

ν(x)
ν is a stationary distribution.

• (3.72) =⇒ (3.70): This follows directly from (3.65).

• (3.71) =⇒ (3.73):

We consider π a stationary distribution, and we know that ρy,x = 1, for all y, x ∈ E. Then

with (3.69) π(x) = Ex[H̃x]
−1, for x ∈ E, and this proves the claim. �
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Remark 3.29. One can give an alternative formula to (3.73), namely:

(3.79) π(x) =

Ey

[ H̃y−1∑
k=0

1{Xk = x}
]

Ey[H̃y]
, x, y ∈ E, (when y is chosen as x,

this coincides with (3.73)),

where π is the unique stationary distribution under the assumptions of Theorem 3.28.
Indeed, note that Py-a.s., when for m ≥ 1, H̃m

y ≤ n < H̃m+1
y (cf. (3.33)), one has

(3.80)

m

H̃m+1
y

· 1
m

m−1∑
ℓ=0

( H̃y−1∑
0

1{Xk = x}
)
◦ θ

H̃ℓ
y
≤

1

n

n∑
k=0

1{Xk = x} ≤ 1

m+ 1

m∑
ℓ=0

(
H̃y−1∑

0
1{Xk = x}

)
◦ θH̃ℓ

y
· m+ 1

H̃m
y

.

By the strong Markov property (
∑H̃y−1

0 1{Xk = x}) ◦ θ
H̃ℓ

y
, ℓ = 0, 1, . . . are i.i.d. variables

under Py and H̃y ◦ θH̃ℓ
y
, ℓ = 0, 1, . . . are also i.i.d. variables. As a result of the strong law

of large numbers, the expressions on the left and the right of (3.80) converge Py-a.s. to the
expression in the right-hand side of (3.79), when n tends to infinity. On the other hand,
we know from (3.67), (3.73) that

Ey

[ 1
n

n∑
k=1

1{Xk = x}
]
−→
n→∞

π(x).

The formula (3.79) now follows. �

3.5 Asymptotic behavior

We know from (3.67) that for y, x in E,

Ey

[ 1
n

n∑
k=1

1{Xk = x}
]
=

1

n

n∑
k=1

Py[Xk = x] −→
n→∞

ρy,x Ex[H̃x]
−1.

We are going to derive further results concerning the asymptotic behavior of Py[Xn = x],
as n→∞, and replace, when possible, Cesàro convergence (as above), with convergence.
We will see that there are some obstructions to this program. We begin with the

Proposition 3.30. Assume x is transient, then for y ∈ E,

(3.81) Py[Xn = x] −→
n→∞

0.

Proof. We know that, cf. (3.39), Py-a.s.,
∑

k≥1 1{Xk = x} <∞, and therefore

Lx
def
= sup{k ≥ 1; Xk = x} <∞, Py-a.s., “time of last visit to x”,

(Lx = 0, by convention when {. . . } = ∅).
(3.82)

But for n ≥ 1, Py[Xn = x] ≤ Py[Lx ≥ n] −→
n→∞

0, and (3.81) follows.
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The above proposition handles the case of transient states. We will need the

Definition 3.31. For x ∈ E, the period of x is

(3.83)
dx = greatest common divisor of Ix

def
=

{
n ≥ 1; Px[Xn = x]︸ ︷︷ ︸

↑
rx,x(n), cf. (3.5)

> 0
}

(with the convention dx = 1, if Ix = ∅)

Proposition 3.32. If x and y are communicating (see Definition 3.14), then

(3.84) dx = dy.

Proof. We can assume x 6= y. Let k, ℓ ≥ 1, be such that rx,y(k) > 0, ry,x(ℓ) > 0, cf. (3.5).

Then ry,y(ℓ+ k)
(3.7)

≥ ry,x(ℓ) rx,y(k) > 0, so that ℓ+ k ∈ Iy and thus

(3.85) dy divides ℓ+ k.

If n ∈ Ix, then ry,y(ℓ+ n+ k)
(3.7)

≥ ry,x(ℓ) rx,x(n) rx,y(k) > 0, and dy divides ℓ+ n+ k, and
in view of (3.85), dy divides n. So dy divides dx. Interchanging x and y, dx divides dy,
and the claim (3.84) follows.

Definition 3.33. An irreducible Markov chain is called aperiodic if dx = 1, for all x ∈ E.

Theorem 3.34. Consider an irreducible recurrent Markov chain. Then, if it is null

recurrent (cf. Theorem 3.28),

(3.86) Py[Xn = x] −→
n→∞

0, for all x, y ∈ E.

If instead it is positive recurrent and aperiodic

Py[Xn = x] −→
n→∞

Ex[H̃x]
−1(= π(x), cf. (3.73)), for all y, x ∈ E.

տ
unique stationary distribution

(3.87)

Proof. For n ≥ 1, y, x ∈ E, one has

(3.88)

Py[Xn = x] = Py[H̃x ≤ n,Xn = x] =
n∑

m=1
Py[H̃x = m, Xn−m ◦ θm = x]

Markov
property

=
n∑

m=1
Py[H̃x = m]Px[Xn−m = x].

Applying Blackwell’s theorem in the case of an arithmetic distribution, cf. Remark 2.15
1) and Remark 3.9, we know that

(3.89) Px[Xn−m = x] −→
n→∞

0, if x is null recurrent.
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On the other hand, if the chain is aperiodic and x positive recurrent,

(3.90) Px[Xn−m = x] −→
n→∞

Ex[H̃x]
−1.

Using dominated convergence in (3.88), the claim (3.86), (3.87) follow.

Remark 3.35.

1) We based the proof on Blackwell’s theorem for arithmetic distributions. We also refer
to Resnick [12], p. 134, 128, or to Durrett [4], p. 263 for further details.

2) In case the chain is not aperiodic, then (3.87) can clearly break down. For instance
this is the case for Example 3.23 (deterministic motion on the discrete circle).

This example captures what happens when the chain is not aperiodic because:
when the chain is irreducible and recurrent, and all states have period ddd, one
can partition E into

(3.91)
E = E0 ∪E1 ∪ · · · ∪ Ed−1,
so that when x ∈ Ei, rx,y > 0 implies y ∈ Ei+1, if i < d− 1,

implies y ∈ E0, if i = d− 1.

If one considers the chain at times, which are integer multiples of d, it is a
Markov chain on E with transition kernel (rx,y(d))x,y∈E , which has recurrence classes
E0, E1, . . . , Ed−1, and each of these recurrence classes is aperiodic (so one can apply
the previous theorem to this chain). The decomposition (3.91) is called “cyclic decom-
position”, cf. [4], p. 286.

�
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4 Continuous time Markov chains

We consider as in the previous chapter the state space

(4.1) E: an at most denumerable non-empty set.

Definition 4.1. A collection (Xt)t≥0 of random variables with values in E defined on
some (Ω,A, P ) is a continuous time Markov chain with state space E, when:

(4.2)
E[f(Xtn+1) |Xt0 , . . . ,Xtn ]

P -a.s.
= E[f(Xtn+1) |Xtn ],

for any f bounded E → R, n ≥ 0, and 0 ≤ t0 < t1 < · · · < tn < tn+1.

Of special interest to us in this chapter will be the study of the so-called pure jump
processes (with no explosion).

Loosely speaking this corresponds to temporally homogeneous Markov chains that
remain at a location for a positive duration and perform only finitely many jumps during
a finite time. More precisely, we endow E with the discrete topology and introduce the
canonical space

Ω =
{
functions ω(·) from R+ into E, right-continuous with

finitely many jumps on each compact interval
}(4.3)

(in other words; an ω ∈ Ω is a function of the form:

E

t

ω(·)

Fig. 4.1
).

One has a canonical σ-algebra on Ω:

F = σ
(
ω(s), s ≥ 0

)
, i.e. the smallest σ-algebra on Ω, for which all canonical(4.4)

coordinates: ω(s): Ω→ E, s ≥ 0, are measurable,

a canonical filtration on Ω:

Ft = σ
(
ω(s), 0 ≤ s ≤ t

)
, t ≥ 0,(4.5)
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a canonical process:

Xt(ω) = ω(t), t ≥ 0, for ω ∈ Ω,(4.6)

as well as a canonical shift

θt(ω)(·) = ω(t+ ·) ∈ Ω, for t ≥ 0, ω ∈ Ω.(4.7)

Definition 4.2. A pure jump process (with no explosion) on the state space E, is a
collection Px, x ∈ E, of probability measures on (Ω,F), such that:

(4.8)





i) Ex[f(Xtn+1) |Xt0 , . . . ,Xtn ]
Px-a.s.= EXtn (ω)

[f(Xtn+1−tn)],

for all x ∈ E, n ≥ 0, 0 ≤ t0 < t1 < · · · < tn < tn+1, and f :

E → R, bounded, and such that

ii) Px[X0 = x] = 1, for all x ∈ E.

One can replace (4.8) i) with the equivalent formulation:

(4.8) ′ i) Ex[f(Xt+h)| Ft]
Px-a.s.= EXt(ω)[f(Xh)],

for any x ∈ E, t, h ≥ 0, and f : E → R, bounded, (4.8)’ i) =⇒ (4.8) i) is immediate and
(4.8) i) =⇒ (4.8)’ i) uses Dynkin’s lemma). These conditions (as in (3.22)) yield the

(simple) Markov property:

(4.9) Ex[Y ◦ θt | Ft]
Px-a.s.= EXt [Y ], for t ≥ 0, Y bounded F-measurable.

One can then define the transition probability of the chain:

(4.10) rx,y(t) = Px[Xt = y], for t ≥ 0, x, y ∈ E.

As a direct consequence of the above definition, we obtain

Proposition 4.3. Given a pure jump process (with no explosion) in E, one has

rx,y(t) ≥ 0,
∑
z∈E

rx,z(t) = 1, for t ≥ 0, x, y ∈ E,(4.11)

rx,y(t+ s) =
∑
z∈E

rx,z(t) rz,y(s), for t, s ≥ 0, x, y ∈ E(4.12)

(Chapman-Kolmogorov equations),

lim
t→0

rx,y(t) = 1{x=y} = rx,y(0), for x, y ∈ E,(4.13)

Rt f(x)
def
=

∑
z∈E

rx,z(t) f(z) = Ex[f(Xt)], t ≥ 0, f : E → R, bounded, defines(4.14)

a semi-group of bounded operators on L∞(E) (i.e. Rt+s = RtRs, t, s ≥ 0).
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Proof.

• (4.11): obvious.

• (4.12): rx,y(t+ s) = Px[Xt+s = y] = Ex

[
Px[Xt+s = y |Xt]

]

(4.8)i)
= Ex

[
PXt(ω)[Xs = y]

] (4.10)
=

∑
z∈E

rx,z(t) rz,y(s).

• (4.13): rx,y(t) = Px[Xt = y]

dominated
convergence−→

t→0
Px[X0 = y] = 1{x=y}.

• (4.14): This is a direct application of (4.12).

We now continue the investigation of pure jump processes (with no explosion)
introduced in Definition 4.1. To this end we further introduce on Ω, cf. (4.3),

(4.15) T = inf{s ≥ 0;Xs 6= X0}(≤ ∞).

T is an (Ft)-stopping time, indeed for any t ≥ 0,

{T ≤ t} = ⋃
r∈(0,t]∩Q

{Xr 6= X0} ∪ {Xt 6= X0} ∈ Ft.

տ

rational numbers

Proposition 4.4. Given a pure jump process (with no explosion) on E, then for x ∈ E,

(4.16)

there is λ(x) ∈ [0,∞) such that Px[T > t] = e−λ(x) t, for t ≥ 0

(i.e. when λ(x) > 0, T is exponential(λ(x))-distributed, and when

λ(x) = 0, T is P -a.s. infinite, and x is then called “absorbing”).

If λ(x) > 0, then

T and XT

(
= XT(ω)

(ω)
)
are independent under Px,(4.17)

for A ∈ F , Ex[1A ◦ θT |T,XT ]
Px-a.s.= PXT

[A].(4.18)

Proof.

• (4.16): Px[T > t+ s] = Ex[T > t︸ ︷︷ ︸
∈Ft

, 1{T≥s} ◦ θt]
(4.9)
=

Ex

[
T > t, PXt [T > s]

]
= Px[T > t]Px[T > s].

ր

x on {T > t}
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As a result, ϕ(t) = Px[T > t] is non-increasing and tends to 1 as t → 0, and satisfies
ϕ(t+ s) = ϕ(t)ϕ(s). The claim easily follows.

• (4.17): Let f : E → R be bounded, then for t ≥ 0:

(4.19)

Ex[T > t, f(XT )] = Ex[T > t, f(XT ) ◦ θt]
(4.9)
=

Ex

[
T > t,EXt [f(XT )]

]
= Px[T > t]Ex[f(XT )].

տ

x on {T > t}

The claim now follows with the help of Dynkin’s lemma.

• (4.18): Define for n ≥ 1:

ւ (Px-negligible event)

T (n) =
∞∑
k=0

k + 1

2n
1
{ k

2n
≤ T <

k + 1

2n

}
+∞ 1{T =∞}, so that(4.20)

T (n) are (Ft)-stopping times, and T (n) ↓ T , as n→∞.(4.21)

With h bounded continuous on R+, f , fi bounded on E, 0 ≤ i ≤ m, and Y =
∏m

i=0 fi(Xti),
where t0 = 0 < t1 < · · · < tm, we have (note that Px-a.s., all Tn are finite)

(4.22)

Ex[h(T
(n)) f(XT (n))Y ◦ θT (n) ] =

∑
k≥0

Ex

[
h
(
k + 1

2n

)
1
{

k

2n
≤ T <

k + 1

2n

}
f
(
Xk+1

2n

)
Y ◦ θ k+1

2n

]
(4.9)
=

∑
k≥0

Ex

[
h
(
k + 1

2n

)
1
{

k

2n
≤ T <

k + 1

2n

}
f
(
Xk+1

2n

)
EX k+1

2n
[Y ]

]
=

Ex

[
h(T (n)) f(XT (n)) EX

T (n)
[Y ]

]
.

Note that Px-a.s.,

h is continuous, s → Xs(ω) right-continuous,

↓ and (4.21)

h(T (n)) f(XT (n))Y ◦ θT (n) = h(T (n)) f(XT (n))
m∏
i=0

fi(XT (n)+ti
) −→
n→∞

h(T ) f(XT )Y ◦ θT , as well as

h(T (n)) f(XT (n))EX
T (n)

[Y ] −→
n→∞

h(T ) f(XT )EXT
[Y ],
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and all these quantities are bounded. It thus follows by dominated convergence in (4.22)
that

(4.23) Ex[h(T ) f(XT )Y ◦ θT ] = Ex

[
h(T ) f(XT )EXT

[Y ]
]
.

Using Dynkin’s lemma, (4.18) follows.

In view of the above proposition, given a pure jump process (with no explosion) on E,
we can introduce

λ(x) ∈ [0,∞), x ∈ E, such that Px[T > t] = e−λ(x)t, for t ≥ 0,(4.24)

the jump rate,

qx,y = Px[XT = y], for x ∈ E, with λ(x) > 0, and y ∈ E,(4.25)

= 1{x=y}, for x ∈ E, with λ(x) = 0, and y ∈ E,

the jump transition probability.

Remark 4.5. With the help of (4.18) it is not hard to see that given a jump rate func-
tion λ(·)λ(·)λ(·): E → [0,∞) and a jump transition probability (qx,y)(qx,y)(qx,y) on EEE, compatible
with λ(·)λ(·)λ(·), i.e., such that:

(4.26) qx,y ≥ 0,
∑
y∈E

qx,y = 1, and qx,x = 0, if λ(x) > 0, qx,x = 1, if λ(x) = 0,

then there is at most one pure jump process with no explosion which has jump
rate λ(·) and jump transition probability (qx,y)x,y∈E .

This simply comes from the iteration of (4.18), which shows that the law of the
(Sn,XSn)n≥0, under each Px, where we set

(4.27) S0 = 0, S1 = T, . . . , Sn+1 = T ◦ θSn + Sn ≤ ∞,

are the successive times of jump, and by convention we set

XSn = XSn−1 , if Sn =∞, (i.e. XSn = XSk
with k ≤ n,

the largest integer such that Sk <∞),

is uniquely determined (to this end, note that Sn+1 = T + Sn ◦ θT and XSn+1 = XSn ◦ θT ,
for each n ≥ 0, and use induction together with (4.18)).

Since the canonical space ΩΩΩ in (4.3) rules out explosions, i.e. limn Sn(ω) = ∞,
for ω ∈ Ω, ω is fully determined by (Sn,XSn)n≥0. Indeed, one has

(4.28) ω(t) = XSn on {Sn ≤ t < Sn+1}, t ≥ 0, n ≥ 0.

This settles the question of the uniqueness of pure jump processes with no explosion. �
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Example 4.6. (Poisson process with rate λ)

We consider E = N = {0, 1, 2, . . . } and for x ∈ N,

(4.29) Px = the law on Ω of (x+Nt)t≥0,

where (Nt)t≥0 is a Poisson process with intensity λ > 0. Then we deduce from (1.34) that
Px defines a pure jump process on N with

rx,y(t) =e
−λt (λt)y−x

(y − x)! , if y ≥ x in N, t > 0

0, if y < x.

(4.30)

Since for a Poisson process the jump inter-arrival times are exponential(λ)-distributed,
and the jumps have size 1, we see that

λ(·) ≡ λ is the jump rate,(4.31)

qx,y = 1{y=x+1}, is the jump transition probability.(4.32)

�

4.1 Construction of pure jump processes (with no explosion)

As explained in the Remark 4.5, given a rate function λ(·) on E and a jump transition
probability (qx,y) satisfying the requirements (4.26), there is at most one pure jump process
with no explosion satisfying (4.24), (4.25).

We will now investigate the existence of such an object. This will lead to additional
conditions to rule out “explosions” (i.e. accumulations of jumps in finite time). We thus
consider

λ(·) : E → [0,∞)(4.33)

(qx,y)x,y∈E , with qx,y ≥ 0,
∑
y∈E

qx,y = 1, for x ∈ E, and(4.34)

qx,x = 0, if λ(x) > 0, qx,x = 1, if λ(x) = 0.

The transition probability (qx,y) on E enables us to construct the laws P x, x ∈ E, on
Ω = EN of the canonical discrete time Markov chain with transition probability (qx,y), see
Proposition 3.4. We denote by Xn, n ≥ 0, the canonical process on Ω.

We then consider on some auxiliary probability space (Ωaux,Aaux, P ), independent
variables Tn(y), n ≥ 0, y ∈ E, with

(4.35)
P [Tn(y) > t] = e−λ(y)t, when λ(y) > 0, and

Tn(y) ≡ ∞, when λ(y) = 0.
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We then define on Ω× Ωaux the variables

(4.36)
S0 = 0, S1 = T0(X0), S2 = T0(X0) + T1(X1), . . . ,

Sn = T0(X0) + · · ·+ Tn−1(Xn−1), . . . .

The idea is to exploit (4.28) to try to construct the pure jump process attached to (4.33),
(4.34), with Sn as in (4.36) and Xn playing the role of XSn in (4.28). We now make a
crucial assumption:

Non-explosion assumption:

(4.37) For all x ∈ E, Px × P︸ ︷︷ ︸
|| def
Qx

-a.s., lim
n

Sn
↑

in (4.36)

=∞ .

Lemma 4.7. The assumption (4.37) is equivalent to

(4.38) for x ∈ E, P x-a.s.,
∑
n≥0

λ(Xn)
−1 =∞.

Proof.

• (4.37) =⇒ (4.38): We prove the claim by contradiction.

Assume that for some x ∈ E, M > 0, P x

[
AM
|| def︷ ︸︸ ︷∑

n≥0λ(Xn)
−1 ≤M

]
> 0. Observe that

(4.39) EQx [Sn | (X .)]
(4.36)
=

n−1∑
ℓ=0

EQx[Tℓ(Xℓ) | (X.)]
(4.35)
=

n−1∑
ℓ=0

λ(Xℓ)
−1.

Hence, using monotone consequence, we find that

EQx [lim
n

Sn | (X.)] =
∞∑
ℓ=0

λ(Xℓ)
−1 ≤M, on AM , and therefore

EQx [lim
n

Sn, AM ] <∞, so that lim
n

Sn <∞, Qx-a.s. on AM ,

with Qx[AM ] = P x[AM ] > 0, a contradiction.

As as result (4.38) holds.

• (4.38) =⇒ (4.37): Note that for s > 0, n ≥ 1, one has:

EQx [exp{−s Sn}] = EQx

[
EQx

[
exp

{
− s

n−1∑
ℓ=0

Tℓ(Xℓ)
} ∣∣∣ (X.)

]]

(4.35)
= EPx

[ n−1∏
ℓ=0

∫ ∞

0
λ(Xℓ) exp{−

(
s+ λ(Xℓ)

)
u
}
du

]

= EPx

[ n−1∏
ℓ=0

( λ(Xℓ)

λ(Xℓ) + s

)]
= EPx

[n−1∏
ℓ=0

(
1− s

λ(Xℓ) + s

)]
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and since 1− a ≤ e−a

≤ EPx

[
exp

{
−

n−1∑
ℓ=0

s

λ(Xℓ) + s

}]
.

Letting n→∞, we can apply monotone convergence and find:

(4.40)
EQx[exp{−s lim

n
Sn}] ≤ EPx

[
exp

{
− ∑

ℓ≥0

s

λ(Xℓ) + s

}]
(4.38)
= 0

(as we explain below).

Indeed, on {∑ℓ≥0(λ(X ℓ)+s)
−1 <∞}, P x-a.s. λ(Xℓ) 6= 0 for all ℓ ≥ 0 (since λ(y) = 0 im-

plies y is absorbing for the discrete time chain, so that P x-a.s., on {λ(X ℓ) = 0}, λ(Xm) = 0,
for all m ≥ ℓ), and also λ(Xℓ)→∞, so that (λ(X ℓ)+s)

−1 ∼
ℓ→∞

λ(Xℓ)
−1. This shows that

P x-a.s. on
{ ∑

ℓ≥0

(λ(Xℓ) + s)−1 <∞
}
, one has

∑
ℓ≥0

λ(Xℓ)
−1 <∞,

so that by (4.38), P x

[ ∑
ℓ≥0

(λ(Xℓ) + s)−1 <∞
]
= 0.

So (4.40) shows that Qx-a.s., limSn =∞, i.e. (4.37).

We will now see that under the equivalent conditions (4.37) or (4.38) we can construct
a pure jump process with no explosion attached to λ(·) and (qx,y) in the sense of (4.8),
(4.9), (4.24), (4.25).

Theorem 4.8. Given λ(·), (qx,y) as in (4.33), (4.34), for which the non-explosion as-
sumption (4.37) (or (4.38)) holds. Then, there exists a unique pure jump process with no
explosion, cf. Definition 4.2, attached to λ(·) and (qx,y) (i.e. so that (4.24), (4.25) hold).

Proof. We already know the uniqueness part of the statement, cf. Remark 4.5. We turn
to the existence part. We define on Ω× Ωaux, cf. above (4.36),

(4.41) Zt = Xn on {Sn ≤ t < Sn+1}, for t ≥ 0, n ≥ 0.

Since the non-explosion condition (4.37) holds, for each x ∈ E, Qx-a.s., Z. is an element of
Ω (cf. (4.3)), and in fact Z. is a measurable map from {limn Sn =∞} (of full Qx-measure)
into Ω, in view of (4.41). We thus define

(4.42) Px = the image measure of Qx under Z..

Note that

(4.43) Px[X0 = x]
(4.42)
= Qx[Z0 = x]

(4.41)
= Qx[X0 = x] = 1.

We will now check that

(4.44) EQx
[
f0(Zs0) . . . fk(Zsk) f(Zsk+h)] = EQx [f0(Zs0) . . . fk(Zsk)E

QZsk [f(Zh)]
]
,
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for any x ∈ E, 0 ≤ s0 < s1 < · · · < sk, h > 0, f0, f1, . . . , fk, f : E → R, bounded. By
(4.42) it will then follow that Px, x ∈ E, fulfill (4.8), and this will complete the proof of
our claim. We will only prove (4.44) when

(4.45) λ(x) > 0, for all x ∈ E.

The general case when there can be absorption points is handled in a similar fashion,
simply the notation is a bit more cumbersome. We introduce, cf. (4.36),

Nt = sup{n ≥ 0;Sn ≤ t},

and denoting by A the left-hand side of (4.44), we find with (4.41) that:

A = EQx[f0(XNs0
) . . . fk(XNsk

) f(XNsk+h
)]

=
∑

0≤n0≤n1≤···≤nk
0≤n

EQk [f0(Xn0) . . . fk(Xnk
) f(Xnk+n), C]

with C = {Ns0 = n0, . . . , Nsk = nk, Nsk+h = nk + n}
(summing over possible values of Ns0 , . . . , Nsk+h).

(4.46)

For x0, x1, . . . , xm in E we write

(4.47)

νx0 , . . . , xm(dt0, . . . , dtm) =
∏

0≤i≤m
µλ(xi)︸ ︷︷ ︸

(dti)

↑ ↑

probability on (0,∞)m+1 exponential (λ(xi))-distribution

and we define

(4.48)

h(x0, . . . , xnk+n) =

νx0,...,xnk+n

(
t0 + · · ·+ tni−1 ≤ si < t0 + · · · + tni

, for 0 ≤ i ≤ k, and
t0 + · · · + tnk+n−1 ≤ sk + h < t0 + · · ·+ tnk+n

)

(we use the convention t0 + · · ·+ tm−1 = 0, when m = 0).

From (4.35), (4.36), we see that under Qx, conditionally on X0,X1, . . . ,Xnk+n, the
variables T0(X0), . . . , Tnk+n(Xnk+n) are independent, respectively exponential (λ(X i))-
distributed, 0 ≤ i ≤ nk + n. Hence we find that

Qx[C |X0, . . . ,Xnk+n] = h(X0, . . . ,Xnk+n).(4.49)
↑

last line of (4.46)

In the right-hand side of (4.48), we can express the condition on tnk
as

tnk
> sk − (t0 + · · ·+ tnk−1)︸ ︷︷ ︸

|| def
u ≥ 0

and tnk
− u+ tnk+1 + · · ·+ tnk+n−1 ≤(4.50)

h < tnk
− u+ · · ·+ tnk+n.
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Note also that for ρ > 0, ϕ(·) bounded measurable, u ≥ 0,

(4.51)

∫

t>u
ϕ(t− u) ρ e−ρtdt = e−ρu

∫ ∞

0
ϕ(s) e−ρsds

(this reflects the “lack of memory of the exponential distribution”).

Applying this identity with ρ = λ(xnk
), t = tnk

in (4.48) and using (4.50) we find:

(4.52)

h(x0, . . . , xnk+n) = h1(x0, . . . , xnk
)h2(xnk

, . . . , xnk+n), with

h1(x0, . . . , xnk)) = νx0,...,xnk
(t0 + · · · + tni−1 ≤

si < t0 + · · ·+ tni
; 0 ≤ i ≤ nk), and

h2(y0, . . . , yn) = νy0,...,yn(t0 + · · ·+ tn−1 ≤ h < t0 + · · · + tn).

Coming back to (4.49) we see that we have the crucial factorization:

(4.53) Qx[C |X0, . . . ,Xnk+n] = h1(X0, . . . ,Xnk
)h2(Xnk

, . . . ,Xnk+n).

Therefore the term under summation in the last line of (4.46) equals

(4.54)

EQx
[
f0(Xn0) . . . fk(Xnk

) f(Xnk+n)︸ ︷︷ ︸
|| def
F

, C
]
=

EPx [F h1(X0, . . . ,Xnk
)h2(Xnk

, . . . ,Xnk+n)]

and using the Markov property of the discrete time Markov chain X.

at time nk:

= EPx
[
f0(Xn0) . . . fk(Xnk

)h1(X0, . . . ,Xnk
)EPxnk [f(Xn)h2(X0, . . . ,Xn)]︸ ︷︷ ︸

|| def
Gn(Xnk

)

]

= EPx
[
f0(Xn0) . . . fk(Xnk

)Gn(Xnk
)h1(X0, . . . ,Xnk

)]

and using a similar identity for h1 in place of h in (4.49), we obtain

= EQx
[
f0(Xn0) . . . fk(Xnk

)Gn(Xnk
), Ns0 = n0, . . . , Nsk = nk

]
.

As a result, inserting this identity in the last line of (4.46), we find that

(4.55) A =
∑
n≥0

EQx [f0(XNs0
) . . . fk(XNsk

)Gn(XNsk
)].

Similarly, we see that for y ∈ E, n ≥ 0,

(4.56) Gn(y) = EQy [f(XNh
), Nh = n],
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so that

A = EQx
[
f0(XNs0

) . . . fk(XNsk
) E

Q
XNsk [f(XNh

)]
]

(4.41)
= EQx

[
f0(Zs0) . . . fk(Zsk)E

QZsk

[
f(Zh)]

]
,

and this proves (4.44)!

Terminology:

The canonical discrete time Markov chain Xn,n≥0, with transition probability (qx,y)x,y∈E
is sometimes called the discrete skeleton of the pure jump process (Xt)t≥0.

As an application of the main theorem concerning the construction of pure jump pro-
cesses with no explosion, i.e. Theorem 4.8, we discuss the so-called birth and death pro-
cesses.

Example 4.9. (Birth and death processes)

0 1 ii− 1 i+ 1

λ0 λiµi

Fig. 4.2

We introduce the jump rate function and the jump transition probability

(4.57)

λ(i) = λi + µi > 0, for i ∈ N, with λi, µi ≥ 0, µ0 = 0, and

qi,i+1 =
λi

λi + µi
, qi,i−1 =

µi
λi + µi

, when i ≥ 1, and q0,1 = 1.

An easy sufficient condition for (4.38) is for instance:

(4.58)
∑
j≥0

1

λj + µj
=∞ .

Indeed, if we set Vj =
∑

n≥0 1{Xn = j}, the total number of visits to j of the discrete
time Markov chain, we have for any i ≥ 0,

P i-a.s.,
∑
n≥0

λ(Xn)
−1 =

∑
j≥0

Vj
λj + µj

.

For any given i, we partition the canonical space Ω (where (Xn)n≥0 is defined) into the
two events {Vj > 0, for all j > i} and {Vj = 0, for some j > i}. Then, on {Vj > 0, for all
j > i}, Pi-a.s.,

∑
j≥0

Vj
λj + µi

≥ ∑
j≥i

1

λj + µj

(4.58)
= ∞.
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On the other hand, for j > i, on {Vj = 0}, Pi-a.s. Vℓ = ∞, for some ℓ < j, and hence
Pi-a.s. on {Vj = 0, for some j > i}, Vℓ =∞, for some ℓ ≥ 0, so that

∑
n≥0 λ(Xn)

−1 =∞.
So we see that when (4.58) holds, the condition (4.38) holds as well.

We will see below that for any i ≥ 1, as t→ 0, in the notation of (4.10),

ri,i+1(t) = λi t+ o(t), ri,i−1(t) = µi t+ o(t),

r0,1(t) = λ0 t+ o(t).
(4.59)

This gives the interpretation of λi as a “birth rate in state i”, and of µi as a “death rate
in state i”. �

We now discuss the small ttt behaviour of the transition probability rx,y(t).

Proposition 4.10. Given a pure jump process with no explosion on E, we have for x ∈ E
rx,x(t) = 1− λ(x) t+ o(t), as t→ 0 (see (4.10) for notation),(4.60)

rx,y(t) = λ(x) qx,y t+ o(t), as t→ 0, for y 6= x in E.(4.61)

Proof. We assume λ(x) > 0, otherwise the claim is obvious. We first show that

(4.62) Px

[
T + T ◦ θT ≤ t︸ ︷︷ ︸

“two jumps before time t”

]
= o(t), as t→ 0.

Indeed, one has for t→ 0:

(4.63)

Px[T + T ◦ θT ≤ t] ≤ Px[T ≤ t, T ◦ θT ≤ t]
(4.18)
= Ex

[
T ≤ t, PXT

[T ≤ t]
] (4.17)

=

Px[T ≤ t]Ex

[
PXT

[T ≤ t]
] (4.16)

=
(4.25)

(1− e−λ(x)t)︸ ︷︷ ︸
≤λ(x)t

∑
y∈E

qx,y(1− e−λ(y)t)

︸ ︷︷ ︸
dominated

convergence
↓ t→0

= o(t),

and (4.62) follows.

• (4.60):

rx,x(t) = Px[T > t] + Px[Xt = x, and at least two jumps occur before time t]

= e−λ(x)t + o(t) = 1− λ(x) t+ o(t), as t→ 0.

• (4.61):

rx,y(t)
(4.62)
= Px[Xt = y, at most one jump occurs up to time t] + o(t)

= Px[XT = y, T ≤ t] + o(t)
(4.16)
=

(4.25)
(1− eλ(x)t) qx,y + o(t) = λ(x) qx,y t+ o(t),

as t→ 0. This concludes the proof of the proposition.
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Remark 4.11.

(4.64) λx,y
def
= λ(x) qx,y, for x 6= y in E,

can thus be viewed as the “rate of jump of the chain from xxx to yyy”.

We have already seen a similar infinitesimal description as in (4.60), (4.61) for the
Poisson process, cf. (1.6). �

4.2 Backward and forward Kolmogorov equations, generator

We consider a pure jump process (with no explosion) on E, and we are going to derive in-
tegral and differential equations for the transition probability rx,y(t) of the chain, cf. (4.10)
for the notation.

Proposition 4.12. (λ(·), qx,y) as in (4.24), (4.25))

Given a pure jump process (with no explosion) on E, then for x, y ∈ E, t ≥ 0, we have
(with δx,y the Kronecker symbol)

rx,y(t) = δx,y e
−λ(x)t +

∫ t

0
λ(x)e−λ(x)s ∑

z 6=x

qx,z rz,y(t− s) ds,(4.65)

(Backward integral equation),

rx,y(t) = δx,y e
−λ(x)t +

∫ t

0

∑
z 6=y

rx,z(s)λ(z) qz,y e
−λ(y)(t−s) ds,(4.66)

(Forward integral equation).

Proof. Loosely speaking, the backward equation will correspond to conditioning in
the first jump of the chain before time t, and the forward equation to conditioning on
the last jump of the chain before time t.

• (4.65):

rx,y(t) = Px[Xt = y]

= Px[Xt = y, T > t]︸ ︷︷ ︸
||

(4.16) e−λ(x)tδx,y

+Px[Xt = y, T ≤ t].(4.67)

So we only need to concentrate on the last term. We note that Px-a.s.:

1{Xt=y,T≤t}, = lim
n→∞

n∑
k=1

1
{
(k − 1)

n
t < T ≤ k

n
t
}

︸ ︷︷ ︸
pairwise disjoint as k varies

1
{
X (n−k+1)

n
t
= y

}
◦ θT(4.68)

ր

the trajectory is

right-continuous
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Hence it follows from dominated convergence that

(4.69)

Px[Xt = y, T ≤ t] =

lim
n→∞

n∑
k=1

Ex

[
(k − 1)

n
t < T ≤ k

n t, 1{X (n−k+1)
n

t
= y} ◦ θT

]

(4.18)
= lim

n→∞

n∑
k=1

Ex

[
(k − 1)

n
t < T ≤ k

n
t, PXT

[
X (n−k+1)

n
t
= y

]]

(4.17)
= lim

n→∞

n∑
k=1

Px

[
(k − 1)

n
t < T ≤ k

n
t
]
Ex

[
rXt,y

(
(n− k + 1)

n
t
)]

(4.16)
=

(4.25)
lim
n→∞

n∑
k=1

(∫ k
n
t

(k−1)
n

t
λ(x) e−λ(x)u du

) ∑
z 6=x

qx,z rz,y

(
t− (k − 1)

n
t
)

= lim
n→∞

∫ t

0
λ(x) e−λ(x)u ∑

z 6=x

qx,z rz,y(t− un)
︸ ︷︷ ︸

≤1, with un=
n∑
1

(k−1)
n

t 1{
(k−1)

n
t<u≤ k

n
t}

du

but since X. is right-continuous, piecewise-constant, 0 ≤ s → rz,y(s) = Pz[Xs = y] is
right-continuous, so that

dominated
=

convergence

∫ t

0
λ(x) e−λ(x)u ∑

z 6=x

qx,z rz,y(t− u) du .

Inserting the above identity in the last line of (4.67), we obtain (4.65). One can actually
have a quicker proof if one proves a slightly more general statement that (4.18) and uses
it to handle (4.69)!

• (4.66): We start as in (4.67) and write

(4.70) rx,y(t) = e−λ(x)tδx,y + Px[Xt = y, T ≤ t].

Then, by (4.41), (4.42) we write

Px[Xt = y, T ≤ t] = ∑
n≥1

Qx[Xn = y, Sn ≤ t < Sn+1].

Note that for n ≥ 1, by the tower property of conditional expectations

(4.71)

Qx[Xn = y, Sn ≤ t < Sn+1 |X0, . . . ,Xn−1, S1, . . . , Sn−1] =

EQx
[
Qn[Xn = y, Sn ≤ t < Sn+1 |X0, . . . ,Xn, S1, . . . , Sn

]
︸ ︷︷ ︸

(4.35) || (4.36)
exp{−λ(y)(t−Sn)} 1{Xn=y,Sn≤t}

∣∣X0, . . . ,Xn−1,

S1, . . . , Sn−1

]
=

EQx
[
exp{−λ(y)(t− Sn)} 1{Xn = y, Sn ≤ t} |X0, . . . ,Xn−1, S1, . . . , Sn−1

]

(4.35)
=

(4.36)
qXn−1,y

1{Sn−1 ≤ t}
∫ t

Sn−1

λ(Xn−1) exp{−λ(Xn−1)(s − Sn−1)

−λ(y)(t− s)} ds.
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As a result, we have obtained that

(4.72)

Px[Xt = y, T ≤ t] =

∑
n≥1

EQx

[
Sn−1 ≤ t, qXn−1,y

∫ t

Sn−1

λ(Xn−1)e
−λ(Xn−1)(s−Sn−1)−λ(y)(t−s)ds

](withm = n− 1)
=

∑
z 6=y

∑
m≥0

EQx

[
Sm ≤ t,Xm = z,

∫ t

Sm

e−λ(z)(s−Sm)−λ(y)(t−s)ds
]
λ(z) qz,y

Fubini
=

∑
z 6=y

λ(z) qz,y

∫ t

0

∑
m≥0

EQx [1{Sm ≤ s,Xm = z} e−λ(z)(s−Sm)]︸ ︷︷ ︸
||

Qx[Xm=z,Sm≤s<Sm+1] by (4.35),(4.36)

e−λ(y)(t−s)ds

(4.41)
=

(4.42)

∑
z 6=y

λ(z) qz,y

∫ t

0
rx,z(s) e

−λ(y)(t−s)ds.

Inserting this identity in (4.70), we obtain(4.66).

We are now ready to derive the so-called Kolmogorov backward and forward equations.

We recall the notation λx,y
(4.64)
= λ(x) qx,y, for x 6= y.

Theorem 4.13. Given a pure jump process (with no explosion) on E, then for x, y ∈ E,

(4.73) rx,y(·) is continously differentiable on R+,

and for t ≥ 0, one has:

d

dt
rx,y(t) =

∑
z 6=x

λx,z rz,y(t)− λ(x) rx,y(t),(4.74)

(Kolmogorov backward equation),

d

dt
rx,y(t) =

∑
z 6=y

rx,z(t)λz,y − rx,y(t)λ(y), for a.e. t(4.75)

(Kolmogorov forward equation).

Remark 4.14. One can informally obtain (4.74) and (4.75) as follows. One first writes:

d

dt
rx,y(t) = lim

h↓0

1

h

(
rx,y(t+ h)− rx,y(t)

)

and then with the Chapman-Kolmogorov equation (4.12), one writes

• for (4.74) (using Rt+h = RhRt)

1

h

(
rx,y(t+ h)− rx,y(t)

)
=

∑
z 6=x

rx,z(h)

h︸ ︷︷ ︸
h→0
−→
(4.61)

λx,z

rz,y(t) +
rx,x(h) − 1

h︸ ︷︷ ︸
h→0
−→
(4.60)

−λ(x)

rx,y(t)
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and assuming one can exchange limits and sums (we are only informally arguing at this
stage) the above for h→ 0 tends to

∑
z 6=x λx,z rz,y(t)−λ(x) rx,y(t), i.e. this “yields” (4.74).

• for (4.75) (using instead Rt+h = RtRh)

1

h

(
rx,y(t+ h)− rx,y(t)

)
=

∑
z 6=y

rx,z(t)
rz,y(h)

h
+ rx,y(t)

(ry,y(h)− 1)

h
,

which (assuming again that one can exchange limit h → 0 and sum over z), with (4.61),
(4.60), leads to a right-hand side, which should tend to

∑
z 6=y rx,z(t)λz,y− rx,y(t)λ(y), for

h→ 0. In other words, this “yields” (4.75).

The integral equations (4.65), (4.66) will enable us to bypass the difficulty of making
the above informal arguments rigorous. �

Proof.

• (4.73):
We can rewrite (4.65), changing s into t− s in the integral, as:

rx,y(t) = δx,y e
−λ(x)t +

∫ t

0
λ(x) e−λ(x)(t−s) ∑

z 6=x

qx,z rz,y(s) ds

= e−λ(x)t
(
δx,y +

∫ t

0
λ(x) e−λ(x)s ∑

z 6=x

qz,z rz,y(s)

︸ ︷︷ ︸
bounded function

ds
)
.

(4.76)

We first see from (4.76) that rx,y(·) is a continuous function. Then we can inject again
this information into the right-hand side of (4.76), and see that the “bounded function” is
in addition continuous. It now follows that rx,y(·) is continuously differentiable. (We just
employed that is known as a “bootstrap argument”.) This proves (4.73).

• (4.74):
We differentiate the last line of (4.76) and obtain:

d

dt
rx,y(t) = −λ(x) rx,y(t)︸ ︷︷ ︸

↑

derivative of the e−λ(x)t factor

+e−λ(x)tλ(x) eλ(x)t
∑
z 6=x

qx,y rz,y(t)

= −λ(x) rx,y(t) +
∑
z 6=x

λx,z rz,y(t).

This proves (4.74).
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• (4.75):

We rewrite (4.66), noting that δx,y e
−λ(x)t = δx,y e

−λ(y)t, as

(4.77) rx,y(t) = e−λ(y)t
(
δx,y +

∫ t

0

∑
z 6=y

rx,z(s)λ(z) qz,y e
λ(y)sds

)
.

From the Lebesgue differentiation theorem, we find that

d

dt
rx,y(t) = −λ(y) rx,y(t) + e−λ(y)t ∑

z 6=y

rx,z(t)λ(z) qz,y e
λ(y)t, a.e. t,

= −λ(y) rx,y(t) +
∑
z 6=y

rz,y(t)λz,y.

This proves (4.75).

Remark 4.15.

1) One can in fact argue that
∑

z 6=y rx,z(t)λz,y is continuous in t, so that one has (4.75)
for all t (thanks to (4.73)), and one does not need to write for a.e. t, see for instance
[3], p. 247. To establish the continuity of

∑
z 6=y rx,z(t)λz,y, one can also express rx,z(t)

for z 6= x with the help of (4.76) as a function of the form e−λ(x)t
∫ t
0 ψ(s)ds, with ψ ≥ 0,

integrable over bounded intervals.

2) One can also use the integral equations (4.65) and (4.66) to show that when r̃x,y(t),
t ≥ 0, x, y ∈ E, are transition probabilities such that r̃x,y(t)→ δx,y, as t→ 0, for x, y in
E, and r̃x,y(t) satisfies the backward (resp. the forward) equation attached to λ(·), and
(qx,y) (which we tacitly assume to determine a pure jump process with no explosion),
then necessarily:

r̃x,y(t) = rx,y(t), for all t ≥ 0, x, y ∈ E,
see [3], p. 253. �

We now define the generator matrix of the pure jump process

(4.78)
Ax,y = λx,y , when y 6= x,

= −λ(x) , when y = x.

Note that Ax,y satisfies

(4.79)
∑
y∈E

Ax,y = 0, for x ∈ E.

(The generator matrix is sometimes called the QQQ-matrix of the Markov chain).

When EEE is finite, we can write the backward Kolmogorov equation in matrix notation
as

(4.80)
d

dt
r(t) = Ar(t), t ≥ 0.
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and the forward Kolmogorov equation as

(4.81)
d

dt
r(t) = r(t)A, t ≥ 0.

The solution to (4.80) or (4.81) with r(0) = Id, is then

(4.82) r(t) = exp{t A} def
=

∑
n≥0

tn

n!
An.

Example 4.16. A machine is operative for exponential times with parameter λ > 0,
and then inoperative for exponential times with parameter µ > 0. If E = {0, 1}, with 0:
operative, 1: inoperative, we have

(4.83) λ0,1 = λ = λ(0), λ1,0 = µ = λ(1),

and the generator matrix is

(4.84) A =

(
−λ λ
µ −µ

)
.

The backward Kolmogorov equations yield:

r′0,0(t) = λ
(
r1,0(t)− r0,0(t)

)
(= −r′0,1(t), because r0,0(t) + r0,1(t) = 1),(4.85)

r′1,0(t) = µ
(
r0,0(t)− r1,0(t)

)
(= −r′1,1(t), for similar reasons as above).(4.86)

As a result we see that µ r′0,0(t) + λ r′1,0(t) = 0 so that

(4.87) µ r0,0(t) + λ r1,0(t) = const.
t=0
= µ.

Therefore λ r1,0(t) = µ
(
1− r0,0(t)

)
and inserting in (4.85):

(4.88) r′0,0(t) = µ
(
1− r0,0(t)

)
− λ r0,0(t) = µ− (λ+ µ) r0,0(t).

As a result g(t) = r0,0(t)− µ
λ+µ satisfies the differential equation:

(4.89) g′(t) = −(λ+ µ) g(t),

and hence g(t) = c e−(λ+µ)t, for t ≥ 0.

It follows that r0,0(t) = c e−(λ+µ)t + µ
λ+µ , and for t = 0, this forces the relation

1 = c+
µ

λ+ µ
, i.e. c =

λ

λ+ µ
.
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We thus obtain:

(4.90)





r0,0(t) =
λ

λ+ µ
e−(λ+µ)t +

µ

λ+ µ
,

r0,1(t) = 1− r0,0(t) =
−λ
λ+ µ

e−(λ+µ)t +
λ

λ+ µ
,

r1,0(t) =
µ

λ
r0,1(t) =

−µ
λ+ µ

e−(λ+µ)t +
µ

λ+ µ
,

r1,1(t) =
µ

λ+ µ
e−(λ+µ)t +

−λ
λ+ µ

.

• The forward Kolmogorov equations yield:

r′0,0(t) = −r0,0(t) λ+ r0,1(t)µ,(4.91)

r′1,0(t) = −r1,0(t) λ+ r1,1(t)µ.(4.92)

Since r0,1(t) = 1− r0,0(t), we find

r′0,0(t) = −(λ+ µ) r0,0(t) + µ .

This equation coincides with (4.88), and we then proceed as below (4.88).

As it often happens, the forward equations are easier to solve in concrete examples. �

4.3 Transience and recurrence

In the case of pure jump process with no explosion, the notions of recurrence or tran-
sience of a state x ∈ E turn out to be governed by the corresponding notions
for the discrete time Markov chain Xn, n ≥ 0, with transition probability (qx,y)x,y∈E ,
cf. Theorem 4.8 (this chain is also sometimes called the discrete skeleton of the pure
jump process (Xt)t≥0). More precisely, one introduces the successive return times of the
pure jump process to the site y ∈ E, via

hitting time of y
ւ

H̃y = inf{t > 0; Xt = y and there exists s ∈ (0, t) with Xs 6= y}(4.93)

(note that Py-a.s., H̃y =∞, when y is absorbing), and

H̃0
y = 0, and for m ≥ 0, H̃m+1

y = H̃y ◦ θH̃m
y
+ H̃m

y ,(4.94)

so that H̃m
y , m ≥ 0, are the successive return times of (Xt)t≥0(Xt)t≥0(Xt)t≥0 to yyy.

Definition 4.17. A state y ∈ E is said recurrent for (Xt)t≥0, if

(4.95) Py[H̃y <∞] = 1, or when y is absorbing,

and it is said transient if

(4.96) Py[H̃y <∞] < 1, and y is not absorbing,
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From (4.41), (4.42) that link (Xn)n≥0 and (Xt)t≥0, it is clear that

(4.97)
y is transient for (Xt)t≥0 ⇐⇒ y is transient for (Xn)n≥0,

y is recurrent for (Xt)t≥0 ⇐⇒ y is recurrent for (Xn)n≥0.

In a similar fashion x, y ∈ E are communicating for the pure jump process with no
explosion (Xt)t≥0 if

(4.98)
Px[Hy <∞] Py[Hx <∞] > 0, where

Hz
def
= inf{t ≥ 0,Xt = z} denotes the entrance time of X. in z.

Then with (3.47) and (4.98)

(4.99)
x and y are communicating for (Xt)t≥0 ⇐⇒ x and y are

communicating for (Xn)n≥0.

As a result of (4.97) and (4.99) we can directly import the partition of E in (3.48):

(4.100) E = T ∪R1 ∪R2 ∪ . . . ,

where T is the set of transient states in E and R1, R2, . . . pairwise disjoint equivalence
classes of recurrent states.

One also defines positive and null recurrent states via:

Definition 4.18. A recurrent state x ∈ E is said positive recurrent when

(4.101) Ex[H̃x] <∞, or when x is absorbing (i.e. λ(x) = 0).

It is said null recurrent when

(4.102) Ex[H̃x] =∞, and x is not absorbing.

Remark 4.19. Unlike what happens in the case of recurrence, or transience, the notions
of positive and null recurrence for the continuous chain and its discrete skeleton
are in general different. For instance, see the exercises for an example of

- a site x which is positive recurrent for the discrete skeleton but null recurrent for
the pure jump process.

On the other hand, if one looks at E = Z, with

qx,y =
1

2
if |x− y| = 1, λ(x) = 1 + x2,

then the discrete skeleton is simple random walk on Z, which is null recurrent. In partic-
ular, (4.38) holds and (Xt)t≥0 is well-defined. We will see in Example 4.29 that:

- any x ∈ Z is null recurrent for the discrete skeleton but positive recurrent for (Xt)t≥0.

�
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4.4 Stationary distributions

Definition 4.20. A probability π on E is called a stationary distribution of (Xt)t≥0,
pure jump process (with no explosion) on E, when

(4.103)
∑
x∈E

π(x) rx,y(t)︸ ︷︷ ︸
↑

transition probability of

the pure jump process

= π(y), for all t ≥ 0, and y ∈ E.

It is called a reversible distribution of (Xt)t≥0, when

(4.104) π(x) rx,y(t) = π(y) ry,x(t), for all t ≥ 0, and x, y ∈ E.

Remark 4.21.

1) As in the discrete time setting,

(4.105) π reversible =⇒ π stationary.

Indeed
∑

x∈E π(x) rx,y(t)
(4.104)
=

∑
x∈E

π(y) ry,x(t) = π(y), for all y ∈ E, t ≥ 0.

2) By analogous considerations as in (3.56), the condition (4.103) is equivalent to the

identity (with Pπ
def
=

∑
x∈E π(x)Px)

(4.106) θt ◦ Pπ︸ ︷︷ ︸
↑

image of Pπ under θt

= Pπ, for all t ≥ 0.

3) The characterizations (4.103) of a stationary distribution, and (4.104) of a reversible
distribution, are not practical. We will soon see equivalent conditions, which are ex-
pressed in terms of the generator matrix A from (4.78), and which can be checked in
concrete examples. �

We will now provide a characterization of stationary distributions, which is easier to
check than (4.103). It is a type of “infinitesimal version” of (4.103), which is expressed in
terms of the generator matrix A, cf. (4.78).

Theorem 4.22. Given a pure jump process (with no explosion), with generator matrix
(Ax,y)x,y∈E, a probability π on E is a stationary distribution if and only if:

(4.107) for all y ∈ E,
∑
x 6=y

π(x)Ax,y <∞ and
∑
x∈E

π(x)Ax,y = 0,

(recall from (4.78) that Ax,x = −λ(x), and Ax,y = λ(x) qx,y = λx,y for x 6= y).

103



Proof.

• We first assume that π is stationary.

Then for y ∈ E, t ≥ 0, by (4.103) and the forward integral equation (4.66):

(4.108)

π(y)
(4.103)
=

∑
x∈E

π(x) rx,y(t)

(4.66)
= π(y) e−λ(y)t +

∫ t

0

∑
x∈E,z 6=y

π(x) rx,z(s)λz,y e
−λ(y)(t−s)ds

(4.103)
= π(y) e−λ(y)t +

∫ t

0

∑
z 6=y

π(z)λz,y e
−λ(y)(t−s)ds.

As a result, setting t− s = u, we find

π(y) (1− e−λ(y)t)︸ ︷︷ ︸
||

λ(y)
∫ t
0 e−λ(y)udu

=
∑
z 6=y

π(z) λz,y︸︷︷︸
||

Az,y

∫ t

0
e−λ(y)udu,

from which we deduce that

(4.109) π(y)λ(y) =
∑
z 6=y

π(z) Az,y (<∞)

and this proves (4.107).

• We only prove the converse under a stronger assumption then (4.107), namely:

(4.110)
∑
x∈E

π(x)λ(x) <∞ and
∑
x∈E

π(x)Ax,y = 0 for all y ∈ E.

(Since for x 6= y Ax,y = λx,y ≤ λ(x), clearly (4.110) implies (4.107). It is in general a
stronger assumption.)

From the backward equation (4.74), we find
∣∣∣ d
dt
rx,y(t)

∣∣∣ =
∣∣∣
∑
z∈E

Ax,z rz,y(t)
∣∣∣ ≤

∑
z∈E
|Ax,z| = 2λ(x).

↑
π-integrable by (4.110)

We thus can exchange differentiation and summation as follows:

(4.111)

d

dt

( ∑
x∈E

π(x) rx,y(t)
)
=

∑
x∈E

π(x)
d

dt
rx,y(t) =

∑
x∈E

π(x)
∑
z∈E

Ax,z rz,y(t)

Fubini
=

and (4.110)

∑
z∈E

( ∑
x∈E

π(x)Ax,z

)
rz,y(t)

(4.110)
= 0.

As a result we find that
∑
x∈E

π(x) rx,y(t) =
∑
x∈E

π(x) rx,y(0) = π(y), for all t ≥ 0, y ∈ E,

and π is a stationary distribution.
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Remark 4.23. The assumption (4.110) means that:

C
def
=

∑
x∈E

π(x)λ(x) <∞,

and the probability ν(x) = λ(x) π(x)
C is a stationary distribution for the discrete skeleton

(i.e. the discrete time Markov chain (Xn)n≥0 attached to (qx,y)x,y∈E).

One can however show that the weaker condition (4.107) also implies that π is a
stationary distribution of the pure jump process. One first observes that π cannot put
mass on transient states, see [13], p. 118-119, see also Corollary 4.28 below. So π is
supported by irreducible recurrent classes, and one can conclude using Theorem 3.5.5,
p. 120 of the same reference, see otherwise [12], p. 393, and 398-401. �

Corollary 4.24. If a probability π on E is such that

(4.112) π(x)Ax,y = π(y)Ay,x, for all y 6= x in E,

then π is a stationary distribution of the pure jump process (with no explosion).

Proof. For y ∈ E, one has

∑
x 6=y

π(x)Ax,y =
∑
x 6=y

π(y)Ay,x = π(y)λ(y) <∞,

and π(y)λ(y) = −π(y)Ay,y, so (4.107) holds true, and π is a stationary distribution.

Remark 4.25. One can in fact show (see [13], p. 124-125), that:

(4.113) under (4.112), πππ is a reversible distribution.

Note that (4.107) has the interpretation:

∑
x 6=y

π(x)Ax,y

︸ ︷︷ ︸
flow into y

= π(y)λ(y)︸ ︷︷ ︸
flow out of y

“total balance equations”,

whereas (4.112) has the interpretation (x 6= y)

π(x)Ax,y︸ ︷︷ ︸
flow from x to y

= π(y)Ay,x︸ ︷︷ ︸
flow from y to x

“detailed balance equations”.

�
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4.5 Stationary distributions and asymptotic behavior

The next result will be helpful (compare with (3.67)):

Proposition 4.26.

Px[Xt = y] −→
t→∞

Px[Hy <∞]

λ(y)Ey[H̃y]
, for x, y ∈ E.(4.114)

տ

understood as = 1, when λ(y) = 0,
i.e. for y an absorbing state

Proof. We have Px[Xt = y] = Px[Hy ≤ t,Xt = y].

As in the case of (4.69), we can use a discretization procedure to handle

Px[Hy ≤ t,Xt = y] = Px

[
Hy ≤ t,X(t−Hy(ω))

(
θHy(ω))(ω)

)
= y

]
,

see (4.68), and find that

(4.115) Px[Xt = y] = Ex[Hy ≤ t, rXHy ,y(t−Hy)] = Ex[Hy ≤ t, ry,y(t−Hy)].

In a similar way, if we replace Hy with H̃x (the return time to x), we can write

Px[Xt = y] = Px[H̃x > t,Xt = y] + Px[H̃x ≤ t, Xt = y]

= Px[H̃x > t,Xt = y] + Ex[H̃x ≤ t, rx,y(t− H̃x)]

(with a similar justification as for the derivation of (4.115)).

We thus see that rx,y(t) satisfies the renewal equation

(4.116) rx,y(t) = Px[H̃x > t, Xt = y] +

∫ t

0
rx,y(t− s) dFx(s),

with Fx(·) the possibly defective distribution function (when x is transient or x absorbing),
non-arithmetic with (4.16), (4.17), when λ(x) > 0,

(4.117) Fx(u) = Px[H̃x ≤ u], for u ≥ 0.

In particular, choosing x = y in (4.116), we have a first term in the right-hand side

Py[H̃y > t,Xt = y] = e−λ(y)t, which is direct Riemann integrable by (2.86), when λ(y) > 0,
and

(4.118) ry,y(t) = e−λ(y)t +

∫ t

0
ry,y(t− s) dFy(s), for all t ≥ 0.

We thus find that

- when λ(y) = 0, ry,y(t) ≡ 1
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- when λ(y) > 0, and y is recurrent by Smith’s key renewal theorem, cf. (2.88)

ry,y(t) −→
t→∞

∫ ∞

0
e−λ(y)udu

∫ ∞

0
u dFy(u)

= (λ(y)Ey [H̃y])
−1

(due to (4.16), (4.17), one sees that the non-arithmeticity condition of Fy is satisfied)

- when λ(y) > 0, and y is transient by (2.103) one finds that

ry,y(t) −→
t→∞

0 .

Inserting these limit behaviors in (4.115), we find by dominated convergence that

Px[Xt = y] −→
t→∞

{
Px[Hy <∞] (λ(y)Ey [H̃y])

−1, if λ(y) > 0,

Px[Hy <∞], if λ(y) = 0,

and this proves (4.114).

Remark 4.27.

1) If Ex[H̃x] < ∞, we see from (4.116) and the fact that Px[H̃x > t,Xt = y] is direct
Riemann integrable, and dFx(·) is non-arithmetic, that

(4.119) Px[Xt = y]
(2.88)−→
t→∞

∫∞
0 Px[H̃x > t,Xt = y] dt

Ex[H̃x]

Fubini
=

Ex

[ ∫ H̃x

0 1{Xt = y} dt
]

Ex[H̃x]
.

2) For pure jump processes with no explosion, unlike what happened for discrete time
Markov chains, we do not need to consider limits in the Césaro sense, but we can
directly take limits in t→∞, in (4.14) or (4.119) (compare with (3.67) and (3.87)).

�

Corollary 4.28. Let π be a stationary distribution of the pure jump process (Xt)t≥0 with
no explosion. Then for y ∈ E,

(4.120) π(y) > 0 implies that y is positive recurrent for (Xt)t≥0.

Proof.

π(y)
(4.103)
=

∑
x∈E

π(x) rx,y(t) =
∑
x∈E

π(x)Px[Xt = y]
dominated convergence−−−−−−−−−−−−−−−→
if y is transient or
null recurrent by (4.114)

0 .

Therefore π(y) > 0 =⇒ y positive recurrent.
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Example 4.29. (Continuation of Remark 4.19)

E = Z

xx− 1 x+ 1

qx,x−1 = qx,x+1 =
1
2

λ(x) = 1 + x2

Fig. 4.3

The discrete skeleton Xn, n ≥ 0, is a simple random walk on Z, which is recurrent.
It follows that P x-a.s.,

∑
n≥0 λ

−1(Xn) = ∞, and the non-explosion criterion (4.38) is
fulfilled, and hence, the jump process with no explosion attached to λ(·) and (qx,y)x,y∈Z is
well-defined.

Define for x ∈ Z

(4.121) π(x) = c(1 + x2)−1 where c = 1/
( ∑

z∈Z
(1 + z2)−1

)
,

so that π is a probability.

Then, we have the identity

(4.122) π(x)Ax,y =
c

2
1{|x− y| = 1} = π(y)Ay,x, for all x 6= y in Z.

It follows that π is a reversible, and hence stationary, distribution of (Xt)t≥0. As a result
of (4.120)

any site x ∈ Z is positive recurrent for (Xt)t≥0,(4.123)

but since (Xn)n≥0 is a simple random walk on Z

any site x ∈ Z is null recurrent for (Xn)n≥0,(4.124) �

We carry on our discussion of stationary distributions and asymptotic behavior.

Theorem 4.30. (compare with Theorem 3.28)

Consider a pure jump process (with no explosion) on E, which is irreducible (i.e. all x, y
in E communicate). Then one has the equivalences

some x in E is positive recurrent,(4.125)

all x in E are positive recurrent,(4.126)

there is a stationary distribution.(4.127)

Furthermore, if one of the above equivalent conditions holds, then

(4.128) π(x) =
1

λ(x)Ex[H̃x]
(> 0), x ∈ E, is the unique stationary distribution,

(if λ(x) = 0, then E = {x} and λ(x)Ex[H̃x] is to be understood as equal to 1).
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Proof. We assume λ(x) > 0, for all x in E, otherwise due to irreducibility E = {x0} and
the statements are obvious.

• (4.125) =⇒ (4.126) and (4.125) =⇒ (4.127):

We assume x positive recurrent and define for all y in E:

(4.129) π(y)
def
=

Ex[
∫ H̃x

0 1{Xs = y}ds]
Ex[H̃x]

> 0, by irreducibility.

Then for u ≥ 0 and y in E, one has:

π(y)
(4.119)
= lim

t→∞
Px[Xt+u = y]︸ ︷︷ ︸

rx,y(t+u)

(4.12)
= lim

t→∞

∑
z∈E

rx,z(t) rz,y(u)

Fatou
≥ ∑

z∈E
lim
t→∞

rx,z(t) rz,y(u)
(4.119)
=

∑
z∈E

π(z) rz,y(u).

(4.130)

Moreover,

∑
y∈E

∑
z∈E

π(z) rz,y(u) =
∑
z∈E

π(z)
∑
y∈E

rz,y(u)

︸ ︷︷ ︸
=1

=
∑
z∈E

π(z)
(4.129)
= 1.

So one has equality in (4.122) and

(4.131) π(y) =
∑
z∈E

π(z) rz,y(u), for each u ≥ 0, y ∈ E: i.e. π is stationary,

and (4.127) follows.

Since π(y) > 0, for each y ∈ E, it follows from (4.120) that each y in E is positive
recurrent, and (4.126) follows.

• (4.126) =⇒ (4.125): is clear.

• (4.127) =⇒ (4.125): follows from (4.120).

• (4.128):
If one of (4.125), (4.126), (4.127) holds and π is a stationary distribution, then

π(y) =
∑
x∈E

π(x)Px[Xt = y] −→
t→∞

(λ(y)Ey[H̃y])
−1,(4.132)

using (4.114) and dominated convergence.
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Remark 4.31. Under the equivalent conditions (4.125) - (4.127), the unique stationary
distribution can also be expressed as

(4.133) π(y) =
Ex[

∫ H̃x

0 1{Xs = y}ds]
Ex[H̃x]

, for y ∈ E, with x ∈ E an arbitrary in E,

as seen in (4.129). �

The large time behavior of the transition probability is described by

Theorem 4.32. Consider a pure jump process with no explosion on E and y ∈ E.

• If y is transient or null recurrent, then

(4.134) Px[Xt = y] −→
t→∞

0, for x ∈ E.

If the pure jump process is irreducible and positive recurrent, then

(4.135) Px[Xt = y]→ π(y), for x ∈ E, with π the unique stationary distribution.

Proof. This follows from (4.114) and (4.128).
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5 Brownian motion

Brownian motion is definitely a fundamental example of stochastic processes with contin-
uous trajectory. It is at the same time an example of Gaussian process, of Markov process,
and of continuous martingale. This leads to a very rich mathematical theory. The present
chapter only contains a brief introduction to Brownian motion. We refer for instance to
[8] for a detailed exposition.

Definition 5.1. (Ω,A, P ), a probability space. A stochastic process Bt(ω), t ≥ 0, is called
(standard) Brownian motion if:

B0 = 0,(5.1)

for any 0 = t0 < t1 < · · · < tn, the random variables Bti −Bti−1 , 1 ≤ i ≤ n,(5.2)

are independent (“independent increments”, cf. (1.1)),

for t > 0, s ≥ 0, A ∈ B(R): P [Bt+s −Bs ∈ A] =
∫

A

1√
2π t

exp
{
− x2

2t

}
dx,(5.3)

(“stationary Gaussian increments”),

with probability 1, t→ Bt(ω) is a continuous function from R+ into R.(5.4)

Sketch of construction:

There are several possible methods, we explain a construction which highlights the link
with the simple random walk. Consider

Xn, n ≥ 1, on some (Ω,F , Q) which are i.i.d.,(5.5)

with var(Xn) = 1, E[Xn] = 0, n ≥ 1,

Sn =

{
X1 + · · ·+Xn, n ≥ 1,
0, n = 0,

(5.6)

the “random walk” based on the increments (Xi)i≥1.

We then introduce the polygonal interpolation:

St = the polygonal line interpolating Sn, for n ≥ 0,(5.7)

B
(n)
t =

1

n
Sn2t, t ≥ 0, the rescaled (in space and time) trajectory.(5.8)

Note that from the central limit theorem for any t > 0

(5.9)

1

n
S[n2t] =

√
[n2t]

n︸ ︷︷ ︸
↓ n→∞
√
t

S[n2t]

[n2t]1/2
in law−→
n→∞

µt
↑

centered Gaussian

law with variance t
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and in fact for t0 = t0 < t1 · · · < tk, using the vector valued version of the central limit
theorem, cf. [4], p. 151:

(5.10)

( 1

n
S[n2t1],

1

n

(
S[n2t2] − S[n2t1]

)
, . . . ,

1

n

(
S[n2tk ] − S[n2tk−1]

)) in law−→
n→∞

µt1 ⊗ µt2−t1 ⊗ · · · ⊗ µtk−tk−1

(
in other words, for f bounded continuous on Rd:

∫
f
( 1
n
S[n2t1], . . . ,

1

n

(
S[n2tk ] − S[n2tk−1]

))
dQ −→

n→∞

∫

Rk

f dµt1 ⊗ · · · ⊗ dµtk−tk−1
.

)

0 t

Fig. 5.1: The polygonal line St

The difference of the random vector in (5.10) and (B
(n)
t1 , B

(n)
t2 −B

(n)
t1 , . . . , B

(n)
tk
−B(n)

tk−1
),

tends to 0 in Q probability, and from this one can deduce that

(5.11)
(B

(n)
t1 , B

(n)
t2 −B

(n)
t1 , . . . , B

(n)
tk
−B(n)

tk−1
)

in law−→
n→∞

µt1 ⊗ µt2−t1 ⊗ · · · ⊗ µtk−tk−1

for k ≥ 1, and t0 = 0 < t1 < · · · < tk arbitrary.

From this fact, one sees that all finite dimensional distributions (B
(n)
t1 , B

(n)
t2 , . . . , B

(n)
tk

converge in law as n→∞, and the limit corresponds to centered independent Gaussian
increments with respective variances ti − ti−1, 1 ≤ i ≤ k.

But a much stronger type of convergence takes place usually referred to as “Invariance

Principle” (of Donsker). One can view (B
(n)
t )t≥0 as a random variable on (Ω,F , Q) with

values into the canonical space

(5.12) Ωcan = C([0,∞),R) space of continuous functions [0,∞)→ R,

endowed with the σ-algebra:

(5.13) Fcan = σ-algebra generated by all maps ω → ω(s), s ≥ 0.
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The canonical space (Ωcan,Fcan) also has the canonical process

(5.14) Xt(ω) = ω(t), for t ≥ 0, ω ∈ Ωcan.

One endows Ωcan with the topology of uniform convergence on compact intervals, for
instance metrized with the distance:

(5.15) d(ω, ω′) =
∑
n≥1

1

2n
( sup
0≤s≤n

|ω(s)− ω′(s)|) ∧ 1.

One then shows the invariance principle (we refer to [8], p. 70 for a proof)

(5.16)

(B
(n)
t )t≥0 converges in law to a probability W on (Ωcan,Fcan),

(i.e.
∫
Ω f(B

n
. ) dQ→

∫
Ωcan

f(ω) dW , as n→∞, for any bounded

continuous f : Ωcan → R), and (Xt)t≥0 under the probability W

is a Brownian motion.

There is at most one measure on (Ωcan,Fcan) for which (Xt)t≥0 is a Brownian motion (in-
deed all finite dimensional distributions (X0,Xt1 , . . . ,Xtk ) are then specified by (5.1), (5.2),
(5.3) and we can then apply Dynkin’s lemma). This unique measure W on (Ωcan,Fcan) is
then called Wiener measure.

Note that the map ω ∈ Ωcan
Φt0,...,tk−→ (Xt0(ω), . . . ,Xtk(ω)) ∈ Rk+1 is continuous, so

from (5.16) we recover that
∫
g ◦ Φt0,...,tk(B

(n)
. ) dQ −→

n→∞

∫

Ωcan

g ◦ Φt0,...,tkdW for g continuous bounded in Rk+1,

i.e. all finite dimensional distributions of (B
(n)
t )t≥0 converge in law to the corresponding

finite d-dimensional distribution of (Bt)t≥0, (see below (5.11)).

But the invariance principle (5.16) contains more information. For instance:

ω ∈ Ωcan −→ sup
0≤s≤1

ω(s) ∈ R

is also a continuous map and by the same argument we see that for bounded continuous
f : R→ R

(5.17)

∫
f
( 1
n

sup
0≤k≤n2

Sk

)
dQ −→

n→∞

∫

Ωcan

(
sup

0≤s≤1
Xs(ω)

)
dW (ω)

(that is, 1
n sup0≤k≤n2 Sk converges in law to sup0≤s≤1Xs).

So (5.16) also contains information about trajectorial behavior. �

It is convenient to discuss Brownian motion with the help of the canonical model
introduced above (Ωcan,Fcan,W, (Xt)t≥0) cf. (5.12) - (5.14), (5.16).
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5.1 Brownian motion as a Gaussian process

Proposition 5.2. (Xt)t≥0 (under W ) is a centered Gaussian process (i.e. all the finite
linear combinations

∑
i αiXti are centered Gaussian variables) with covariance function:

(5.18) cov(Xs,Xt) = s ∧ t .
This uniquely characterizes W .

Proof.

• (Xt)t>0 is a Gaussian process under W :

Indeed, for 0 = t0 < · · · < tn, the variables Yj = Xtj −Xtj−1 , 1 ≤ j ≤ n are independent
centered normal variables. But Z =

∑
αjXtj can be expressed as a linear combination of

the Yj; Z =
∑n

j=1 βj Yt, hence for t ∈ R

(5.19)

independence

ւ
ϕZ(t) = EW [exp{it Z}] = EW

[
exp

{
i t

n∑
j=1

βj Yj

}]
=

n∏
j=1

EW [exp{i βj Yj}]

= exp
{
−

n∑
j=1

t2

2
β2j E

W [Y 2
j ]
}
,

ր
centered normal

so that Z is a centered Gaussian variable.

• The covariance function of (Xt)t≥0:

Pick 0 ≤ s ≤ t
EW [XsXt] = EW [Xs(Xs +Xt −Xs)]

= EW [X2
s ]︸ ︷︷ ︸ + EW [Xs(Xt −Xs)]︸ ︷︷ ︸ = s

(5.3) || || (5.2)
s E[Xs]E[Xt −Xs]

(5.3)
= 0

and (5.18) follows.

• W is uniquely determined by the above mentioned properties:

for 0 ≤ t1 ≤ · · · < tn and α ∈ Rn, U = (Xt1 , . . . ,Xtn),

(5.20)

EW [exp{i α.U}] = EW
[
exp

{
i

n∑
1
αj Xtj

}]

centered
Gaussian

= exp
{
− 1

2
EW

[( n∑
1
αj Xtj

)2]}

= exp
{
− 1

2

n∑
j,k=1

αj αk E
W [Xtj Xtk

]}

(5.18)
= exp

{
− 1

2

n∑
j,k=1

αj αk tj ∧ tk
}
.
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So the characteristic function of U is uniquely determined and hence the law of U on Rn is
uniquely determined of [4], p. 150, this for arbitrary t1 < · · · < tn. Using Dynkin’s lemma,
we see that W is uniquely determined.

Example 5.3. (scaling property)

(5.21) for λ > 0, (λXt/λ2)t≥0 is a Brownian motion.

Indeed, it is clearly a centered Gaussian process with continuous trajectories and covari-
ance function:

E[λXt/λ/2 λXs/λ2 ] = λ2
{( t

λ2

)
∧
( s

λ2

)}
= t ∧ s

and the claim follows by noting that the law of (λXt/λ2)t≥0 on Ωcan must now coincide
with the probability W (i.e. the Wiener measure). �

5.2 Brownian motion as a Markov process

We introduce the filtration:

(5.22) Fcan
t = σ(Xs, s ≤ t), t ≥ 0.

Proposition 5.4. (simple Markov property)

For f bounded measurable: R→ R, t ≥ 0, h > 0,

(5.23) EW [f(Xt+h) | Ft]
W -a.s.
= (Rh f)(Xt)

where the semigroup (Ru)u≥0 acting on bounded measurable functions is defined by

(5.24) (Ru f)(x) =





1√
2πu

∫

R

f(x+ z) exp
{
− z2

2u

}
dz, u > 0,

f(x), u = 0,

and (5.23) together with W [X = 0] = 1, uniquely determines W .

Proof. To prove (5.23), it suffices to show that for t0 = 0 < t1 < · · · < tn = t, and

G =
n∏

j=0
gj(Xtj ), with g0, . . . , gn bounded measurable functions,

one has:

(5.25) EW [Gf(Xt+h)] = EW [G(Rh f)(Xt)],
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indeed, with Dynkin’s lemma, it then follows that for A ∈ Fcan
t :

EW [A, f(Xt+h)] = EW [A, (Rh f)(Xt)]

and this yields (5.23).

To check (5.25) observe that:

Xt+h −Xt is N(0, h) distributed and independent of Xtj −Xtj−1 , 1 ≤ j ≤ n, and Xt0 = 0.

As a result we have

independent, N(0, h) distributed

ւ

EW [Gf(Xt+h)] =EW [Gf(Xt +
︷ ︸︸ ︷
Xt+h −Xt)](5.26)

↑ ↑
depends on Xt0 = 0, Xtj −Xtj−1

, 1 ≤ j ≤ n.

integrating out the Xt+h −Xt variable:

=EW
[
G

∫

R

f(Xt + z) exp
{
− z2

2h

} dz√
2π h

]

=EW [G(Rh f)(Xt)]

which proves (5.25).

The semigroup property Ru+v = RuRv follows from the fact that

N(0, u) variable

ւ
(Ru f)(x) = E[f(x+ Z)], so that

(RuRv f)(x) = E[f(x+ Z
↑

N(0,u)

+ Y
↑

N(0,v)

)] = E[f(x+ T
↑

N(0,u+v)

)]

independent

Finally, let us check that:

• W is uniquely determined by (5.23) and W [X = 0] = 1:

Indeed, using induction, these properties completely specify the finite dimensional distri-
butions (Xt0 ,Xt1 , . . . ,Xtn), for t0 = 0 < t,< · · · < tn arbitrary. The claim now follows
with the help of Dynkin’s lemma.
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5.3 Brownian motion as a continuous martingale

The heart of the matter lies in the following statement.

Theorem 5.5. (Paul Lévy)

(5.27)
Xt, t ≥ 0, and X2

t − t, t ≥ 0 are continuous (Fcan
t )-martingales under W,

and W -a.s., X0 = 0.

This uniquely characterizes W .

Proof of the easy part: Clearly, Xt and X
2
t − t, are continuous in the t variable, and for

fixed t ≥ 0, Fcan
t -measurable. Also they are both integrable. Then for s ≤ t:

Fcan
s -meas.

ւ
EW [Xt | Fcan

s ] = EW [Xt −Xs +Xs | Fcan
s ]

= EW [Xt −Xs | Fcan
s ] +Xs.

(5.28)

From the independence of increments, W [X0 = 0] = 1, and Dynkin’s lemma, we see that
Xt −Xs is independent of Fcan

s . Hence:

(5.29) EW [Xt −Xs | Fcan
s ] = EW [Xt −Xs]

(5.3)
= 0

Coming back to (5.28), we obtain

(5.30) EW [Xt |Fcan
s ] = Xs, for all s ≤ t,

and (Xt)t≥0 is an (Fcan
t )-martingale.

Similarly for s ≤ t:

(5.31)

EW [X2
t − t | Fcan

s ] = EW [(Xs +Xt −Xs)
2 − t | Fcan

s ]

= EW [X2
s + 2Xs(Xt −Xs) + (Xt −Xs)

2 − s− (t− s) | Fcan]

= X2
s − s+ 2EW [Xs(Xt −Xs) | Fcan

s ] + EW [(Xt −Xs)
2 | Fcan

s ]− (t− s).

Note that Xs is Fcan
s measurable and

(5.32) EW [Xs(Xt −Xs) |Fcan
s ] = Xs E

W [Xt −Xs | Fcan
s ]

(5.29)
= 0

and using the remark above (5.29), Xt −Xs is independent of Fcan
s . Hence

(5.33) EW [(Xt −Xs)
2 | Fcan

s = EW [(Xt −Xs)
2]

(5.3)
= t− s .
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Inserting (5.32) and (5.33) into (5.31), we obtain:

EW [X2
t − t | Fcan

s ] = X2
s − s, for s ≤ t.

Hence (X2
t − t)t≥0 is an (Fcan

t )-martingale.

The statement that (5.27) implies that (Xt)t≥0 is a standard Brownian motion has a
proof which goes beyond the scope of these notes (but can be found on p. 157 of [8]). �

Remark 5.6.

1) The martingale point of view turns out to be crucial in the development of “stochastic
integrals” and stochastic calculus. Paul Lévy’s theorem offers a powerful character-
ization of Brownian motion.

2) Closely related to the above theorem is the fact that for t > 0, the “quadratic
variation” of X. in [0, t] does not vanish and:

(5.34) W -a.s.,
2n−1∑
k=0

(
X (k+1)

2n
t
−X k

2n
t

)2
−→
n→∞

t .

To see (5.34), set:

(5.35) an =
2n−1∑
k=0

bk,n, with bk,n =
(
X (k+1)

2n
t
−X k

2n
t

)2
− t

2n
,

then bk,n, for fixed n are i.i.d. centered variables.

EW [a2n]

i.i.d.
centered

= 2n EW [b20,n] = 2nE
[(
X2

t
2n
− t

2n

)2]

scaling
=

(5.21)
2n ×

( t

2n

)2
E[(X2

1 − 1)2] ≤ const.
t2

2n
,

(5.36)

in particular EW [
∑

n≥0 an] <∞, so that

(5.37) W -a.s., an −→
n→∞

0,

which proves (5.34).

The property (5.34) is in particular an obstruction to the possibility that with positive
W -probability the trajectory s ∈ [0, t] → Xs has bounded variation (because then the
limit in (5.34) would be equal to 0 since X. is continuous as well, and not equal to t).
One thus already has an indication of the fact that typically under Wiener measure, the
trajectory s→ Xs(ω) is very rough !

�
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Markov property, 15, 67
simple, 67, 115
strong, 67
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