Introduction to Mathematical Finance Dylan Possamaï

Assignment 3

1. Call option properties

Let $C_t(T, K; S)$ be the price at some time $t \ge 0$ of an European Call option with strike $K \ge 0$, maturity $T \ge 0$ and underlying asset with value $(S_t)_{t \in [0,T]}$.

1) Prove that for any $(T_1, T_2, t, K) \in [0, +\infty) \times [T_1, +\infty) \times [0, T_1] \times [0, +\infty)$, we have

$$C_t(T_1, KB(T_1, T_2); S) \le C_t(T_2, K; S)$$

In particular, show that the map $T \mapsto C_t(T, K; S)$ is non-decreasing when interest rates are non-negative. 2) Prove that for any $(T, t, K_1, K_2) \in [0, +\infty) \times [0, T] \times [0, +\infty) \times [0, +\infty)$, we have

$$|C_t(T, K_1; S) - C_t(T, K_2; S)| \le B(t, T) |K_2 - K_1|.$$

Deduce that the map $K \mapsto C_t(T, K; S)$ is continuous and Lebesgue–almost everywhere differentiable.

3) Prove that we have for any $(T,t) \in [0,+\infty) \times [0,T]$

$$\lim_{K \to +\infty} C_t(T, K; S) = 0.$$

2. Put options properties

Prove Proposition 1.4.19 from the lecture notes.