Introduction to Mathematical Finance Dylan Possamaï

Assignment 5

1. On American Calls with dividends

Let S be a stock paying a known dividend amount κ at some known time $\tau \in (0, T)$.

1) Prove that the following relationship holds for any $t < \tau$

$$S_t \ge C_t^A(T, K; S) \ge \max\left\{ \left(S_t - KB(t, \tau) \right)^+, \left(S_t - \kappa B(t, \tau) - KB(t, T) \right)^+ \right\}.$$

2) Assume now that S pays n known dividends $(\kappa_i)_{1 \le i \le n}$ at the known dates $(\tau_i)_{1 \le i \le n}$ with $0 < \tau_1 < \tau_2 < \cdots < \tau_n < T$. Prove that for any $t < \tau_1$

$$S_t \ge C_t^A(T, K; S) \ge \max_{0 \le i \le n} \left\{ \left(S_t - KB(t, \tau_{i+1}) - \sum_{j=1}^i \kappa_j B(t, \tau_j) \right)^+ \right\},$$

with the convention that $\tau_{n+1} = T$ and that a sum over an empty set is 0.

3) Prove that the only dates where it can be optimal to exercise a Call option on an underlying asset paying n known dividends $(\kappa_i)_{1 \le i \le n}$ at the known dates $(\tau_i)_{1 \le i \le n}$ are the maturity T, or at the times $(\tau_i)_{1 \le i \le n}$, just before the dividends are paid. Under which condition(s) is it not optimal to exercise the American Call prior to T?

2. Asymptotics for the CRR model

We consider a variation on the multi-period binomial model from Section 2.3.2.2. We let our time horizon be some time T > 0, and take $\Omega := \{\omega^u, \omega^d\}^m$, where m is a positive integer representing the number of periods in the market. As usual, we fix $\mathcal{F} := \mathcal{P}(\Omega)$. We depart a little bit from the lecture notes' notations, and consider that the market trading dates are given by $(t_k^m)_{k \in \{0,...,m\}}$, where

$$t_k^m := \frac{kT}{m}, \ k \in \{0, \dots, m\}.$$

The probability measure \mathbb{P} on (Ω, \mathcal{F}) is again given by

$$\mathbb{P}[\{\omega\}] = p^{U(\omega)}(1-p)^{m-U(\omega)}, \ \forall \omega := (\omega_1, \dots, \omega_m) \in \Omega,$$

where $p \in (0,1)$, and where for any $\omega \in \Omega$, $U(\omega)$ counts the number of elements of ω which are equal to ω^u .

The non-risky asset values are given by

$$S_{t_k^m}^{m,0}(\omega) := \left(1 + \frac{rT}{m}\right)^k, \ k \in \{0, \dots, m\}, \ \omega \in \Omega,$$

where $r \in \mathbb{R}$, while that of the risky asset are given, for any $\omega \in \Omega$, by

 $S_{t_0^m}^m(\omega) := S_0,$

$$S_{t_{k+1}^m}^m(\omega) = S_{t_{k+1}^m}^m(\omega_1, \dots, \omega_{k+1}) := \begin{cases} (1+h_m) S_{t_k^m}^m(\omega_1, \dots, \omega_k), \text{ if } \omega_{k+1} = \omega^u, \\ (1+\ell_m) S_{t_k^m}^m(\omega_1, \dots, \omega_k), \text{ if } \omega_{k+1} = \omega^d, \end{cases} \quad k \in \{0, \dots, m-1\},$$

where

$$\ell_m := \frac{rT}{m} - \sigma_- \sqrt{\frac{T}{m}}, \ h_m := \frac{rT}{m} + \sigma_+ \sqrt{\frac{T}{m}},$$

for some given $(\sigma_-, \sigma_+) \in (0, +\infty)^2$. Notice that we index the asset values by $m \in \mathbb{N} \setminus \{0\}$ since the aim of the exercise is to let m go to $+\infty$.

We will assume throughout that m is large enough so that

$$\ell_m > -1, \ \frac{rT}{m} > -1.$$

- 1) Prove that for m large enough this market admits no-arbitrage opportunities, and that there is a unique risk-neutral measure \mathbb{Q}^m . We let \underline{m} be the lowest value of m such that this holds.
- 2) We define

$$p_m := \mathbb{Q}^m \left[\left\{ \frac{S_{t_{k+1}^m}^m}{S_{t_k^m}^m} = 1 + h_m \right\} \right], \ k \in \{0, \dots, m-1\}.$$

Give the exact value of p_m and justify that it indeed does not depend on $k \in \{0, \ldots, m-1\}$.

- 3) Which property does the sequence of random variables $\begin{pmatrix} S_{t_{k+1}}^m \\ \frac{S_{t_k}^m}{s_k} \end{pmatrix}_{k \in \{0,...,m-1\}}$ satisfy under \mathbb{Q}^m .
- 4) We denote by Φ_m the characteristic function under \mathbb{Q}^m of the random variable $\log \left(S_{t_1^m}^m/S_{t_0^m}^m\right)$, that is to say

$$\Phi_m(\lambda) := \mathbb{E}^{\mathbb{Q}^m} \left[\exp\left(i\lambda \log\left(\frac{S_{t_1^m}^m}{S_{t_0^m}^m}\right)\right) \right].$$

Show that the following Taylor expansion holds

$$\Phi_m(\lambda) = 1 + \left(i\lambda\left(r - \frac{\sigma_-\sigma_+}{2}\right) - \lambda^2 \frac{\sigma_-\sigma_+}{2}\right) \frac{T}{m} + o\left(\frac{1}{m}\right).$$

5) Let $Y_m := \log(S_T^m/S_0)$. Express the characteristic function of Y_m under \mathbb{Q}^m in terms of Φ_m , and then show that the sequence $(Y_m)_{m \ge m}$ converges in law, under \mathbb{Q}^m , to a random variable whose distribution you'll give explicitly.

Hint: It would be useful here to prove the following lemma.

Lemma 0.1. For any $(z, R) \in \mathbb{C} \times (0, +\infty)$, if $|z| \leq R$, then for any positive integer n

$$\left| e^{z} - \left(1 + \frac{z}{n} \right)^{n} \right| \le e^{R} - \left(1 + \frac{R}{n} \right)^{n}.$$

In addition, for any complex-valued sequence $(z_n)_{n\in\mathbb{N}\setminus\{0\}}$ converging to some $z\in\mathbb{C}$, we have

$$\lim_{n \to +\infty} \left(1 + \frac{z_n}{n} \right)^n = \mathrm{e}^z.$$

6) Prove that for any $K \ge 0$

$$\lim_{m \to +\infty} P_0(T, K; S^m) = e^{-rT} \int_{\mathbb{R}} \left(K - S_0 e^{a + bx} \right)^+ \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx,$$

where you will explicit the constants a and b in terms of $r, \sigma_{-}, \sigma_{+}$, and T.

7) Deduce that there exist constants d_0 and d_1 (which you will again provide explicitly) such that

$$\lim_{m \to +\infty} P_0(T, K; S^m) = e^{-rT} K \mathcal{N}(-d_1) - S_0 \mathcal{N}(-d_0),$$

where $\mathcal{N}(x) := \int_{-\infty}^{x} \frac{e^{-\frac{u^2}{2}}}{\sqrt{2\pi}} du, x \in \mathbb{R}$ is the repartition function of a standard Gaussian random variable. Prove that a similar formula holds for $\lim_{m \to +\infty} C_0(T, K; S^m)$. 8) (Optional question) Redo the whole exercise until question 5)

$$\ell_m := \frac{rT}{m} - \sigma_- \frac{T}{m}, \ h_m := \frac{rT}{m} + \sigma_+ - \sigma_- \frac{T}{m}.$$

(Notice that obviously the expansion in 4) will now be different.)