Introduction to Mathematical Finance
Dylan Possamai

Assignment 8

About Asian options

We consider a complete T-period financial market, such that (NA) holds. There is a risk-less asset which is for now
such that (1 /Sto)te{o,‘..,T} is a positive (F,Q)-super-martingale, where Q is the unique risk-neutral measure on this
market. There is only one risky asset with price process S.

We fix some K > 0, and we are interested in a so-called Asian Call option on S, whose payoff at maturity 7" is given by
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We will denote by C2%(T, K;S) the value at any time ¢ € {0,...,T} of such an option. For notational simplicity, we
will also take the convention in the formulae below that % =0.
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Show that P-a.s.
Deduce that

Show that for any ¢t € {0,...,T} and any s € {¢t,..., T}
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Deduce using Jensen’s inequality for conditional expectations that for any ¢ € {0,...,T}, with P-probability one,
the sequence (Cy¢(k, K; S))re(s,..., 1} is non-decreasing.

Show that
CP(T,K;S) < Cy(T, K3 S).

In this question we will extend the previous results to any time ¢ € {0,...,T'}.

Show that for any ¢ € {0,...,T}, we have P-a.s.
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Show that the result in 3)a) is indeed a generalisation of 2)c).

From now on, and until the end of the problem, we assume that S is deterministic. Prove that we can now write
for any t € {0,...,T}, P-as.
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Define for any ¢ € {0,...,T} the event
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Show that for any ¢t € {0,...,T}, P-a.s.
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Fix now some T, € {1,...,T — 1} and consider the option with maturity 7" and payoff
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We denote by C*(T,, T, K;S) the price process of the corresponding option.

Show that for any ¢t € {T,,...,T}, P-a.s.
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Show that for any ¢ € {T,,...,T}, P-as.
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We now specialise the discussion to a more specific model and assume that for some R > 0
SY =R' te{o0,...,T},
and that the risky asset satisfies that Sy > 0 is given and
Str1 =Ye1 S, t€{0,..., T — 1},
where the (Y7);eq1

7y are i.i.d. random variables under Q, taking values in (0, +00).
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Explain first why
EQY;] =R, ie{l,...,T}.

Prove then that, P-a.s.
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Show that the lower bound obtained in 7)b) can be written formally
Ce*(T, K; S) > Co(T, K; S).

and then that
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Define the following process

Can we however say that S is the price process of a (fictitious) risky asset in this market?



