
Introduction to Mathematical Finance
Dylan Possamaï

Assignment 10 (solutions)

A stochastic volatility model
Fix some positive integer T . We consider a T -period financial market defined as follows

Ω :=
(
{1,−1} × {1,−1}

)T
, F := 2Ω.

We let (ε, η) be the canonical process on Ω, which simply means that for any ω :=
(
(ω1
t , ω

2
t )
)
t∈{1,...,T}, we have

εt(ω) := ω1
t , ηt(ω) := ω2

t , t ∈ {1, . . . , T}.

The probability measure Q on (Ω,F) is defined such that for any t ∈ {1, . . . , T}, the random variables ηt and εt are
Q-independent and centred, and such that the vector (ηt, εt)t∈{1,...,T} is i.i.d. under Q.

The non-risky asset is constant, that is

S0
t (ω) := 1, (t, ω) ∈ {0, . . . , T} × Ω,

and the unique risky asset satisfies that S0 > 0 is given and

St+1(ω) :=
(
1 + σt+1(ω)εt+1(ω)

)
St(ω), with σt+1(ω) := σ̄ + θηt+1(ω), (t, ω) ∈ {0, . . . , T − 1} × Ω,

where (σ̄, θ) ∈ (0,+∞)× [0,+∞) are such that σ̄ + θ < 1.

The filtration F on the market is then the one generated by S1, that is

F0 := {Ω, ∅}, Ft := σ
(
(S1, . . . , St)

)
, t ∈ {1, . . . , T}.

1)a) Show that for any t ∈ {0, . . . , T}, we have St > 0, Q-a.s.

It is clear that for any t ∈ {0, . . . , T − 1}

St+1 ≥ St
(
1− (σ̄ + θ)

)
,

which shows by an immediate induction that

St ≥ S0
(
1− (σ̄ + θ)

)t
> 0,

since we assumed that 1 > σ̄ + θ.

1)b) Show that for any t ∈ {1, . . . , T}, σt is Ft-measurable, and deduce that whenever σ̄ 6= θ, we have

Ft = σ
(
(η1, ε1, . . . , ηt, εt)

)
, t ∈ {1, . . . , T},

and that in general
Ft ⊂ σ

(
(η1, ε1, . . . , ηt, εt)

)
, t ∈ {1, . . . , T}.

First, if θ = 0, then for any t ∈ {1, . . . , T}, σt is always equal to σ̄ and is thus immediately Ft-measurable.
When θ > 0, for any t ∈ {1, . . . , T}, recall that

σt = σ̄ + θηt.

Hence

{σt = σ̄ + θ} = {ηt = 1} =
{

St
St−1

= 1 + σ̄ + θ

}⋃{
St
St−1

= 1− σ̄ − θ
}
,

{σt = σ̄ − θ} = {ηt = −1} =
{

St
St−1

= 1− σ̄ + θ

}⋃{
St
St−1

= 1 + σ̄ − θ
}
.
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As long as σ̄ 6= θ, all four values 1 + σ̄ + θ, 1 + σ̄ − θ, 1 − σ̄ + θ, 1 − σ̄ − θ are different, meaning that ηt
is indeed known as soon as the values of St and St−1 are known, so that ηt is Ft-measurable, and thus
so is σt.

Even if σ̄ = θ, we can still distinguish between the events {ηt = 1} and {ηt = −1} by simply knowing
the values of St and St−1, since 1± 2σ̄ 6= 1.

Next, the inclusion is always clear by definition of S. In addition, when θ 6= σ̄, σ is never equal to 0,
so that for any t ∈ {1, . . . , T}

εt = 1
σt

(
St
St−1

− 1
)
,

and thus εt is also Ft-measurable. This gives the desired remaining result.

1)c) Show that Q is a risk-neutral measure in this market and that (NA) holds.

Ω being finite, all random variables are bounded. We have then for any t ∈ {0, . . . , T − 1}

EQ[St+1
∣∣Ft] = St

(
1 + EQ[σt+1εt+1

∣∣Ft]).
We have seen in the previous question that

Ft ⊂ σ
(
(η1, ε1, . . . , ηt, εt)

)
, t ∈ {1, . . . , T}.

This shows that for any t ∈ {0, . . . , T − 1}, εt+1 and σt+1 are both independent of Ft, and independent
of each other. Hence, since these variables are also centred

EQ[St+1
∣∣Ft] = St

(
1 + EQ[σt+1]EQ[εt+1]

)
= St,

proving thus that the discounted value of S is an (F,Q)-martingale, that Q is a risk-neutral measure,
and that (NA) holds in this market.

1)d) Is Q the only risk-neutral measure in this market? Is the market complete?

From the computations in the previous question it is clear that a sufficient condition for a measure
Q′ on (Ω,F) to be risk-neutral is that for any t ∈ {1, . . . , T}, the random variables ηt and εt are Q′-
independent, that at least one of them is centred, and such that the vector (ηt, εt)t∈{1,...,T} is i.i.d.
under Q′. This gives immediately infinitely many additional risk-neutral measures, and the market
cannot be complete.

2) We are now given a European option with maturity T and payoff h(ST ) for some map h : (0,+∞) −→ R. Despite
the market being incomplete, we decide to use as a viable price for this option its no-arbitrage price under the
risk-neutral measure Q, which we denote by (Vt)t∈{0,...,T}.

Show that there exists a map v : {0, . . . , T} × (0,+∞) such that

Vt = v(t, St), Q-a.s.,

and that v is defined through the following backward induction, for (t, x) ∈ {1, . . . , T} × (0,+∞)

v(T, x) := h(x),

v(t− 1, x) := 1
4

(
v
(
t, x(1 + σ̄ + θ)

)
+ v
(
t, x(1 + σ̄ − θ)

)
+ v
(
t, x(1− σ̄ + θ)

)
+ v
(
t, x(1− σ̄ − θ)

))
.

We will show the result by induction as usual. For t = T , the result is obvious. Let us assume it is
true for some t ∈ {1, . . . , T}, then

Vt−1 = EQ[h(ST )|Ft−1] = EQ
[
EQ[h(ST )|Ft]

∣∣∣Ft−1

]
= EQ[Vt|Ft−1] = EQ[v(t, St)|Ft−1].

The formula is then immediate by noting that given Ft−1, the product εtσt takes four values, each
with probability 1/4, since εt and ηt are Q-independent of each other and of Ft−1, are centred, and
take values in {1,−1}.
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3)a) Show that for any self-financing portfolio ∆ ∈ A(R), we have

EQ
[(
VT −XV0,∆

T

)2] =
T−1∑
t=0

EQ[(Vt+1 − Vt −∆t(St+1 − St)
)2]

.

Notice that both V and XV0,∆ are (F,Q)-martingales (again integrability is immediate since Ω is finite).
Hence, M := V − XV0,∆ + V0 is also an (F,Q)-martingale, which is square-integrable since Ω is finite.
We thus have

EQ
[(
VT −XV0,∆

T

)2] = EQ[(MT −M0)2] = EQ[M2
T −M2

0
]

=
T−1∑
t=0

EQ[M2
t+1 −M2

t

]
=
T−1∑
t=0

EQ[(Mt+1 −Mt)2]
=
T−1∑
t=0

EQ[(Vt+1 − Vt −∆t(St+1 − St)
)2]

.

3)b) Show that for any t ∈ {0, . . . , T − 1}

EQ[(Vt+1−Vt−∆t(St+1−St)
)2∣∣Ft] = EQ[(Vt+1−Vt)2∣∣Ft]−2∆tEQ[(Vt+1−Vt)(St+1−St)

∣∣Ft]+∆2
tEQ[(St+1−St)2∣∣Ft].

It is obvious by expanding the square and using the fact that ∆t is Ft-measurable.

3)c) For any t ∈ {0, . . . , T − 1}, compute EQ[(St+1 − St)2
∣∣Ft] and show that this is always a positive quantity.

We have, since ε2 and η2 are constant equal to 1

EQ[(St+1 − St)2∣∣Ft] = S2
t EQ[σ2

t+1ε
2
t+1
∣∣Ft] = S2

t

(
σ̄2 + θ2 + 2θ̄σEQ[ηt+1|Ft]

)
= S2

t (σ̄2 + θ2) > 0,

where we used that ηt is centred under Q, and that η and ε are Q-independent.

3)d) Define

∆?
t :=

EQ[(Vt+1 − Vt)(St+1 − St)
∣∣Ft]

EQ
[
(St+1 − St)2

∣∣Ft] , t ∈ {0, . . . , T − 1}.

Show that for any t ∈ {0, . . . , T − 1}

EQ
[(
Vt+1 − Vt −∆?

t (St+1 − St)
)2∣∣∣Ft] = min

{
EQ
[(
Vt+1 − Vt − ζ(St+1 − St)

)2∣∣∣Ft] : ζ R-valued and Ft-measurable
}
,

and then that for any t ∈ {0, . . . , T − 1}

EQ
[(
Vt+1 − Vt −∆?

t (St+1 − St)
)2] = min

{
EQ
[(
Vt+1 − Vt − ζ(St+1 − St)

)2] : ζ R-valued and Ft-measurable
}
,

For any ζ which is R-valued and Ft-measurable, we have

EQ
[(
Vt+1−Vt−ζ(St+1−St)

)2∣∣∣Ft] = EQ[(Vt+1−Vt)2∣∣Ft]−2ζEQ[(Vt+1−Vt)(St+1−St)
∣∣Ft]+ζ2EQ[(St+1−St)2∣∣Ft].

Now, for any ω ∈ Ω, the right-hand side above is a second-order polynomial in ζ2(ω), which clearly
attains its infimum at ∆?

t (ω) given in the question, thanks to the positivity shown in 3)c). This shows
the first result. Next, notice that for any ζ which is R-valued and Ft-measurable, we have

EQ
[(
Vt+1 − Vt − ζ(St+1 − St)

)2] = EQ
[
EQ[(Vt+1 − Vt − ζ(St+1 − St)

)2∣∣Ft]]
≥ EQ

[
EQ[(Vt+1 − Vt −∆?

t (St+1 − St)
)2∣∣Ft]]

= EQ
[(
Vt+1 − Vt −∆?

t (St+1 − St)
)2]

.
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This proves that

EQ
[(
Vt+1 − Vt −∆?

t (St+1 − St)
)2] ≤ min

{
EQ
[(
Vt+1 − Vt − ζ(St+1 − St)

)2] : ζ R-valued and Ft-measurable
}
,

and we conclude by noticing that choosing ∆?
t , the infimum is then automatically attained.

3)e) Conclude that
EQ
[(
VT −XV0,∆?

T

)2] = min
{
EQ
[(
VT −XV0,∆

T

)2] : ∆ ∈ A(R)
}
.

We have by 3)a) and 3)d) that for any ∆ ∈ A(R)

EQ
[(
VT −XV0,∆

T

)2] =
T−1∑
t=0

EQ[(Vt+1 − Vt −∆t(St+1 − St)
)2] ≥ T−1∑

t=0
EQ[(Vt+1 − Vt −∆?

t (St+1 − St)
)2]

= EQ
[(
VT −XV0,∆?

T

)2]
,

from which we deduce

min
{
EQ
[(
VT −XV0,∆

T

)2] : ∆ ∈ A(R)
}
≥ EQ

[(
VT −XV0,∆?

T

)2]
,

and we recover equality since ∆? ∈ A(R).

3)f) Show that for any t ∈ {0, . . . , T − 1}

∆?
t = ϕ(t, St), where ϕ(t, x) :=

EQ[σ1ε1
(
v(t+ 1, x(1 + σ1ε1))− v(t, x)

)]
x(σ̄2 + θ2) , x ∈ (0,+∞).

We start from the formula defining ∆?, and have for any t ∈ {0, . . . , T − 1}, using 3)c)

∆?
t =

EQ[(Vt+1 − Vt)(St+1 − St)
∣∣Ft]

EQ
[
(St+1 − St)2

∣∣Ft] =
EQ[(v(t+ 1, St+1)− v(t, St))(St+1 − St)

∣∣Ft]
S2
t (σ̄2 + θ2)

=
EQ[(v(t+ 1, St(1 + σt+1εt+1))− v(t, St))σt+1εt+1

∣∣Ft]
St(σ̄2 + θ2) ,

and we conclude using the fact that under Q, the random variables (σt, εt)t∈{1,...,T} are i.i.d. and
independent of Ft.

4)a) We define for any (t, x) ∈ {0, . . . , T − 1} × (0,+∞)

R(t, x) := EQ
[(
v(t+ 1, x(1 + σ1ε1))− v(t, x)

)2]− (EQ[σ1ε1
(
v(t+ 1, x(1 + σ1ε1))− v(t, x)

)])2
σ̄2 + θ2 .

Show that R ≥ 0.

This is an immediate application of Cauchy–Schwarz’s inequality. Indeed(
EQ[σ1ε1

(
v(t+ 1, x(1 + σ1ε1))− v(t, x)

)])2
≤ EQ

[(
v(t+ 1, x(1 + σ1ε1))− v(t, x)

)2]EQ[σ2
1ε

2
1
]

= (σ̄2 + θ2)EQ
[(
v(t+ 1, x(1 + σ1ε1))− v(t, x)

)2]
.
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4)b) Show that

EQ
[(
VT −XV0,∆?

T

)2] =
T−1∑
t=0

EQ[R(t, St)
]
.

With computations similar to the ones from 3)f), we have that

EQ
[(
Vt+1 − Vt −∆?

t (St+1 − St)
)2∣∣∣Ft] = EQ[(Vt+1 − Vt)2∣∣Ft]− (EQ[(Vt+1 − Vt)(St+1 − St)

∣∣Ft])2
EQ
[
(St+1 − St)2

∣∣Ft] = R(t, St).

The result is then immediate from 3)a) and 3)d).

4)c) Show that EQ
[(
VT −XV0,∆?

T

)2] = 0 for any choice of the payoff h if and only if θ = 0.

Hint: for the direct part of the equivalence, it may prove useful to first establish the result when T = 1, and to think
about choosing a specific payoff h. Then to see how this reasoning can be modified to work for T arbitrary.

Assume first that θ = 0. Then the process σ is constant equal to σ̄, and since the process ε is centred
under Q, we have

EQ
[(
v(t+ 1, x(1 + σ1ε1))− v(t, x)

)2] = 1
2

(
v(t, x(1 + σ̄))− v(t, x(1− σ̄))

2

)2
+ 1

2

(
v(t, x(1− σ̄))− v(t, x(1 + σ̄))

2

)2

=
(
v(t, x(1 + σ̄))− v(t, x(1− σ̄))

2

)2
.

Similarly

EQ[σ1ε1
(
v(t+ 1, x(1 + σ1ε1))− v(t, x)

)]
= σ̄

2
(
v(t, x(1 + σ̄))− v(t, x(1− σ̄))

)
,

so that in this case R(t, x) = 0, and we conclude from 4)b that EQ
[(
VT − XV0,∆?

T

)2] = 0, whatever we
choose for h.

Conversely, if EQ
[(
VT −XV0,∆?

T

)2] = 0, then again by 4)b), we must have, since R is non-negative, that
EQ[R(t, St)

]
= 0 for any t ∈ {0, . . . , T − 1}. Recalling how we showed the non-negativity of R, this can

only happen in the equality case of Cauchy–Schwarz’s inequality, and therefore there must exist some
λ(t, x) ∈ R such that

v
(
t+ 1, x(1 + σ1ε1)

)
− v(t, x) = γ(t, x)σ1ε1.

In particular, if we follow the hint and consider the one-period case T = 1, and choose x = S0

h
(
S0(1 + σ1ε1)

)
= v
(
1, S0(1 + σ1ε1)

)
= v(0, S0) + γ(0, S0)σ1ε1. (0.1)

We claim that this equality is impossible when θ > 0, for an appropriate choice of the payoff h. Indeed,
the product ε1σ1 takes at least three different values (usually 4, unless σ̄ = θ > 0). Hence, the right-
hand side of the previous inequality takes either a unique value when γ(0, S0) = 0, or at least three
distinct ones when γ(0, S0) 6= 0. Now for the left-hand side, take

h(y) :=
(
y − S0(1 + σ̄ ∨ θ)

)+
, y ≥ 0.

Then it is immediate that h
(
S0(1 + σ1ε1)

)
takes exactly two values, namely 0 and S0(σ̄ ∧ θ). Hence for

this choice of h, Equation (0.1) cannot hold, and we thus must have θ = 0.

Now in the general case with T > 1, we can actually do the exact same reasoning at the last period T−1
and T , and taking this time x = S0(1 + σ̄+ θ)T−1, and the payoff h(y) :=

(
y−S0(1 + σ̄+ θ)T−1(1 + σ̄∨ θ)

)+.
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4)d) How do you interpret the result of the previous question? What does the quantity EQ[(VT −XV0,∆?

T

)2] represent?
The result of the previous section stipulates that we can replicate any contingent claim in this market,
which is then complete (indeed, having EQ

[(
VT−XV0,∆?

T

)2] = 0 is equivalent to saying that we can replicate
the option with payoff h) if and only if θ = 0, which corresponds to being in a binomial model. In that
sense EQ[(VT −XV0,∆?

T

)2] is a sort of quadratic hedging error.

Doubling strategies
We consider here a binomial model with one risky asset, but where the time horizon T is now equal to +∞, so that Ω
is now the set of sequences (ωn)n∈N\{0}, where ωn ∈ {ωu, ωd} for any positive integer n.

For simplicity, we fix the value of the non-risky asset to 1, that its S0
t = 1, for any t ∈ N, and we still have that S0 > 0

is given and
St+1(ω) = uSt(ω)1{ωt+1=ωu} + dSt(ω)1{ωt+1=ωd}, (t, ω) ∈ N× Ω,

where 0 < d < 1 < u. We take the filtration F defined by

F0 := {Ω, ∅}, Ft := σ
(
(S1, . . . , St)

)
, t ∈ N \ {0},

and impose F := σ
(
∪t∈N Ft

)
. The probability measure P on (Ω,F) is defined without further comments for now

The notion of self-financing strategies is directly extended to this setting by imposing that the consumption process is
0 at any time t ∈ N \ {0}, and we use the same notations for the associated wealth processes as in the Lecture Notes.
As for the question of arbitrage opportunities, we need the following generalised notion.

Definition 0.1. A generalised arbitrage opportunity ∆ ∈ A(R) is such that there exists an F-stopping time τ , with
P[τ < +∞] = 1 as well as

P
[
X0,∆
τ ≥ 0] = 1, and P

[
X0,∆
τ > 0] > 0.

We will consider throughout the problem the so-called ‘doubling’ strategy ∆, which satisfies

∆0 := 1, ∆t :=
(

1 + u

d

)
∆t−11{ωt=ωd}.

1)a) Check that ∆ ∈ A(R) and give an interpretation for that strategy (it could prove useful to see what happens with
specific values of u, d and S0).

The fact that ∆ is F-adapted is obvious by definition, since ∆0 is a constant and ∆ is defined recur-
sively. Let us fix for instance u = 1.1 and d = 0.9, and that S0 = 100. Then the strategy proceeds as
follows

• at t = 0, we borrow 100 in cash to acquire one unit of the risky asset;

• at t = 1, if ω1 = ωu, we sell our risky asset, obtain 110, pay back the 100 we borrowed, and stop
trading, having gained 10;

• at t = 1, if ω1 = ωd, we borrow u/d× dS0 = 110 to buy u/d = 11/9 additional risky assets;

• at t = 2, if ω1 = ωd, and ω2 = ωu, we sell our 1 + 11/9 risky assets to obtain 220 and pay back
100 + 110 = 210 we borrowed at time 0 and 1,

and if ω1 = ω2 = ωd, this keeps going on as long as there isn’t an upward move for the risky asset
price. In a nutshell, the strategy consists in borrowing more and more cash to acquire risky assets
until the first time a favourable event occurs in the market, and the risky asset price increases.
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1)b) Let (ηt)t∈N be the process representing the number of non-risky assets held in the self-financing portfolio (0,∆).
Show that for any ω ∈ Ω

η0(ω) = −S0, ηt(ω) =
{
ηt−1(ω)− u∆t−1(ω)St−1(ω), if ωt = ωd,

ηt−1(ω) + u∆t−1(ω)St−1(ω), if ωt = ωu.

The value for η0 is immediate since 0 = η0 + 1 × S0. Moreover, the general formula from the lectures
gives us that for any t ∈ N \ {0}

ηt = ηt−1 − (∆t −∆t−1)St = ηt−1 −
((

1 + u

d

)
1{ωt=ωd} − 1

)
∆t−1St,

from which the result is immediate.

1)c) Deduce that for any t ∈ N \ {0}, we have on the event {ω1 = · · · = ωt = ωd}

∆t =
(

1 + u

d

)t
, ηt = −S0

(
1 + u

u+ d− 1
(
(u+ d)t − 1

))
.

On that event, (∆s)s∈{0,...,t} is a geometric sequence, so that the first formula is obvious. Using the
previous question we also have for any s ∈ {1, . . . , t}

ηs = ηs−1 − u∆s−1Ss−1 = ηs−1 − u
(

1 + u

d

)s−1
ds−1S0,

from which we deduce

ηt = η0 − uS0

t∑
s=1

(u+ d)s−1 = −S0

(
1 + u

(u+ d)t − 1
u+ d− 1

)
.

2)a) Show that for any t ∈ N, we have on the event {ω1 = · · · = ωt = ωd}

X0,∆
t = − S0|1− d|

u+ d− 1
(
(u+ d)t − 1).

We use the general formula

X0,∆
t =

t−1∑
s=0

∆s

(
Ss+1 − Ss

)
= S0(d− 1)

t−1∑
s=0

(u+ d)s = S0(d− 1)(u+ d)t − 1
u+ d− 1 ,

which is the desired result.

2)b) Show that for any t ∈ N \ {0}, we have on the event {ω1 = · · · = ωt−1 = ωd} ∩ {ωt = ωu}

X0,∆
t = X0,∆

t−1 + S0(u− 1)(u+ d)t−1,

and then that on the same event

X0,∆
t = S0

u+ d− 1
(
|1− d|+ u(u+ d− 2)(u+ d)t−1).

We have on this event

X0,∆
t = X0,∆

t−1 + ∆t−1(St − St−1) = X0,∆
t−1 +

(
1 + u

d

)t−1
(u− 1)dt−1S0,

so that using the previous question

X0,∆
t = − S0|1− d|

u+ d− 1
(
(u+ d)t−1 − 1) + S0(u− 1)(u+ d)t−1,

and the result follows.
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3) From now on, we assume that
u+ d ≥ 2,

and that P is such that P
[
St+1/St = d, ∀t ∈ N

]
= 0.

We also define
τ(ω) := min

{
t ∈ N \ {0} : ωt = ωu

}
.

3)a) Show that τ is an F-stopping time and that P[τ < +∞] = 1.

It is immediate that for any t ∈ N \ {0}

{τ = t} = {ω1 = · · · = ωt−1 = ωd} ∩ {ωt = ωu} =
{
S1

S0
= · · · = St−1

St−2
= d

}⋂{
St
St−1

= u

}
,

which is obviously an element of Ft. Besides

P[τ = +∞] = P
[
St+1/St = d, ∀t ∈ N

]
= 0,

which proves the second claim.

3)b) Show that for any self-financing strategy (x,∆) ∈ R×A(R) the ‘stopped’ strategy (x,∆τ ), with ∆τ
t (ω) := ∆t∧τ(ω)(ω)

is still admissible and self-financing.

This follows from Lemma B.2.8 in the Lecture Notes, which says that the stopped process ∆τ is
F-adapted whenever ∆ is. Hence ∆τ ∈ A(R). The fact that it remains self-financing is also immediate
by definition, since using the fact that ∆ is self-financing, and that ∆τ = 0

∆τ
s+1Ss+1 = ∆s+1Ss+11{τ≥s+1} + ∆τSs+11{τ≤s} = ∆sSs+11{τ≥s+1} + ∆τSs+11{τ≤s}

= ∆τ
sSs+1 −∆sSs+11{τ=s} = ∆τ

sSs+1.

3)c) Show that ∆τ verifies
∆τ
t = 1{t+1≤τ}∆t, t ∈ N.

Deduce that (
X0,∆
t

)τ = X0,∆τ

t , t ∈ N.

The equality is obvious by definition on the event {τ ≤ t} as both sides are equal to 0. On the event
{τ ≥ t+ 1}, this is again obvious. We thus have(

X0,∆
t

)τ = X0,∆
t∧τ = ∆t∧τSt∧τ = ∆τ

t St∧τ = ∆τ
t St1{t+1≤τ} + ∆τ

t Sτ1{τ≤t} = ∆τ
t St1{t+1≤τ} = ∆τ

t St = X0,∆τ

t .

3)d) Prove that ∆τ is a generalised arbitrage opportunity.

We have ∆τ ∈ A(R) and it is self-financing by the previous questions. Moreover, we have P[τ < +∞] = 1
and

X0,∆τ

τ = X0,∆
τ = S0

u+ d− 1
(
|1− d|+ u(u+ d− 2)(u+ d)τ−1),

which is P–a.s. positive since u+ d ≥ 2 and d < 1.

4) We now assume that P is constructed so that the sequence (St+1/St)t∈N is constituted of P-independent and identically
distributed random variables with mean 1 (under P of course).
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4)a) Show that P is a risk-neutral measure.

The independence assumption ensures that (recall that the filtration is generated by S)

EP[St+1|Ft] = StEP
[
St+1

St

∣∣∣∣Ft] = StEP
[
St+1

St

]
= St,

thus proving the martingale property (integrability is obvious here). Hence the result.

4)b) Show that under P, the distribution of τ is a geometric distribution with a parameter λ1 you will give explicitly in
terms of u and b.

Deduce that in this context, ∆τ is indeed a generalised arbitrage opportunity. What can you deduce concerning the
possibility of extending the first FTAP to a setting with infinite horizon?

We use again independence

P[τ = t] = P
[{
ω1 = · · · = ωt−1 = ωd

}
∩ {ωt = ωu}

]
=
(
1− P[ω1 = ωu]

)t−1P[ω1 = ωu].

Moreover
1 = EP

[
S1

S0

]
= uP[ω1 = ωu] + d

(
1− P[ω1 = ωu]

)
,

so that P[ω1 = ωu] = 1−d
u−d , as usual for binomial models, and the parameter of the geometric distribution

is λ = 1−d
u−d . This proves that in this setting P[τ < +∞] = 1 and that we can apply the results of 3) to

deduce the existence of a generalised arbitrage opportunity.

Overall, we constructed an infinite horizon financial market in which a risk-neutral measure existed,
but there was nonetheless a generalised arbitrage opportunity. This proves that an extension of the
first FTAP to infinite horizon is not straightforward.

4)c) Show that when u ≥ 2
EP[X0,∆τ

τ−1
]

= −∞.

What can you deduce concerning the practical implementability of this strategy?

We have

EP[X0,∆τ

τ−1
]

= EP[X0,∆
τ−1
]

= − S0|1− d|
u+ d− 1

(
EP[(u+ d)τ−1]− 1

)
= − S0|1− d|

u+ d− 1

(
λ

+∞∑
k=1

(u+ d)k−1(1− λ)k−1 − 1
)

= − S0|1− d|
u+ d− 1

(
λ

+∞∑
k=1

(u− 1)k−1 − 1
)

= −∞,

for u ≥ 2. This means that in order to implement this strategy, we would on average have a wealth of
−∞ right before we finally make a gain and quit trading: this is therefore a strategy that requires the
possibility of borrowing unbounded quantities of cash, which is of course not realistic in practice.

1That is
P[τ = t] = λ(1− λ)t−1, t ∈ N \ {0}.
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