Introduction to Mathematical Finance
Dylan Possamai

Assignment 11 (solutions)

Relative entropy

For probability measures Q and P such that Q is absolutely continuous with respect to P, the (relative) entropy of Q

with respect to P is defined as
dQ dQ
P ay
H(QIP) :=E { IP <dIP’>}

In this problem, we consider the one-period trinomial market with R = 1, u; +u3 = 2, and ug = 1 (see Section 2.3.2.3).

1) Find the measure Q* minimising the relative entropy H(Q|P) over all equivalent martingale measures Q € M(S).

We recall from the Lecture notes that the set M(S) is given here by

Q'Y = o, Q)] = ot = B Q)] = gy 2,
with g € (220 i),
With the specific assumptions made here, this simplifies to
Qw'H = a1, Ql{w’} =1-2¢:1, Q{w’}] = 1,

with ¢; € (0, %)
The density % is then given by

dQ _q dQ _1-2¢ dQ _ Q1

ap @) = m ap @)= P p @)= 1—p1—ps

Hence, the entropy is given by

H(Q[P) = 2q; log ( — ihpl _pz)) + (1 —2q1)log (1 _qul) = g9(q1)-

We differentiate and find

’ q1 P2
J(q) = 210g< )
1 =2q1 \/p1(1 — p1 — p2)

Let )\ := %, ¢ attains its maximum on (0,1/2) at 1/(2 + )\), so that the risk-neutral Q*
p1{l=p1—p2

maximising the relative entropy is such that

1

QU = 315 QUH = 25 QN = 5

2) Find the strategy A* € A(R) maximising the expected utility of final wealth, with initial wealth 0 and exponential
utility with parameter o > 0, i.e.,
1—e™®

U(z) = — and u(z) = 0.

Verify that
d@* efaA*(Slfso)

dP - EP[e—aA*(Sl—So)}'




We are trying to solve the problem

sup EF [U(X?’A)] = sup {plU(AS’O(ul —1)) +p2U(0) + (1 — p1 — p2)U (ASp(1 — 1)) }
A€R A€R —

‘We have
F1(A) = So(uy — 1) (plU’(ASO(ul — 1)) = (1= p1 — p2) U (AS(1 — ul))>

— So(us — 1)e—ASo(w—1) (p1 —(1-pm 7p2)62aASO(u171))

Recalling that u; < us =1, we deduce that the supremum of f is attained at

1 D1 )
A* = — lo .
2a(1 — u1)Sy g(l—pl—pg

Hence

S1-So

% 2(1—uq1)S N

e~ @A (S1=50) — (1 51 . ) ' 0, and E¥ [e 74" (51750)] = py 4+ 24/ (1 — p1 — p2).
—p1— D2

e*”A*(Sl’SO)
Let Y = m, we then have

1 dQ* A dQ* 1 _ dQr

= zany - ap @ Y = oy = g @ Y = g Sy T

Y (wi) (ws),

proving the desired equality.

Mean—variance hedging
Let (2, F,P) be a probability space with a filtration F = (]:t)te{(),l ,,,,, T}- There is only one risky asset, and the non-risky
asset value is constant equal to 1. Suppose also that
EF[(S; — S;—1)%|Fi1] < +o0, P-as., Vk € {1,...,T}.
Define
Ay = {A € AR) : X® € L3R, F,,P), t € {1,...,T}}.

Fix some = € R and some payoff ¢ € L2(R, Fr,P). The mean—variance hedging (MVH) is the problem of approximating,
with minimal mean-squared error, a given payoff by the final value of a self-financing trading strategy in a financial
market. We thus consider the problem

Vo(w) := inf EF[(€~ X327 (0.1)

The goal of this exercise is to construct a candidate for the optimal strategy using the MOP.

For A € Ay, and any t € {0,...,T — 1}, we set
Az(t7A) = {A/ eAs: A; = Aj, fOTj S {0,7t}}

Moreover, for any v, € L%(R, F;,P), we define

T-1 2
Ti(v, A) :=EF [(S —vr = Aj(Sj - Sj)>
j=t

ft:| , W(’Ut) = A/eesji;%tf[)) Ft(’Ut, AI)



1) Show that for each t € {0,...,T — 1} and each v, € L?(R, F;, P), the collection of random variables
Ap(ve) := {Ty(vg, A") : A € Ax(t,0)},
is closed under taking minima.
Let Al, and A? belong to Ax(t,0). Define
A% = A1+ A1 4,
where A := {T';(v;, A') < Ty(vy, A%)}. We have to show that A3 € Ay(t,0) and
Ty (v, A%) = min {Ty (v, A"), Ty (v, A%)}.
Since Al € Ay(t,0) and A? € Ay(t,0) we clearly have A} =0 for k € {0,...,t}. Moreover, using that
XA € L2(R, F,P) for i € {1,2}, and
X9 =1, X0 4 1Q\AX?’A2a
we have X?’AB € L%(R, 7, P) for each t € {0,...,T}. This shows that A% € Ay(t,0). Further note that

T-1 T-1 T-1

€= = 30 AYS — 51 = 1a(§— v = X At =5 ) + o (§ - v = X A - 50),

k=t k=t k=t
is also in L?(R, Fr,P) for each t € {0,...,T}, and hence T';(v;, A3) is well-defined.

Finally, since A € F;, we obtain

T-1 2
Ty (v, A®) = EF {(5 — v — Z A (Sy1 — Sk))

k=t

_/—"t:| = ]_Al_‘t(’l)t, Al) + ]-Q\Art(vt7 AQ)

= min {Pt(’l)t, A1)7Ft(’l}t, AQ)}

2) Show that for fixed A € Ay, € R, the process (V;(X;"?)) is an (IF,P)-sub-martingale.

te{0,..., T}

Fix t € {0,...,T}, and k € {0,...,t}. We apply 1) with v; := Xf’A € L?(R, F;,P), which, using results
recalled in the Lecture Notes implies

z,A\ _ 'EA
Vi) = osgint ) Te(X7 )

T-1 2
inf E° —x— ) Aj( A%
ety #(6 R a9 - E )

j=t
-1

7|
JLH;JEP[( “ZAJ . Z e f‘)) }

for a sequence (A"),cn C Ax(t,0) C As(k,0). Note that I‘,E(XTA A") is in LY(R,F;,P) due to the
definitions of A, and (A"),cn. Then using monotone convergence, the tower property and (A™),cn C
Ay (t,0) C As(k,0), we have

T-1

7 VO] - 7| i 2| (& —x—ZA a8 S 8 -5) |77
T-1 ” 2
_nhfoloEPK _I_ZA Sj+1 = 5j) = ;A?(Sj-&-l_sj)) fk]

T-1 2
: P
> ol (6o S5 - R -9)

= Vi(X{%),

A



and so we have the sub-martingale property. The integrability then follows from

Vr(X22) = (€ — Xp®)? € LYR, Fr, P).

Show that A* € A is optimal if and only if the process (Vt(Xf’A*))te{o Ty is an (F,P)-martingale.

‘—’: let A* € A, be optimal. We already know that (Vt(Xf’A*)) is a sub-martingale. To

show that it is a martingale, we thus only need to show that

te{0,...,T}

EP [V (X727 = EF [Vo(x)].

By the optimality of A*, we have as in the Lecture Notes (notice that A45(0,A) is independent of
A € As, and equal to A,)

P P 3 P z,A
B Vo(a)] = B | essinf E°[(¢ - X5%)°| ]

— inf ]EIP’ _XLA 2
191€nA2 [(g T ) ]
=E°[(¢ - X7 = BF [Vr (X7
This gives the desired equality.

‘<=’: suppose that (Vt(Xf"’A*)) is a martingale. Then using Vr (X%’A*) =(¢- X;li’A*)2 gives

te{0,....T}
Ef[Vo(x)] = BF [Vr (X7 %)) = E7[(¢ - X77)7].
Moreover, the same argument as above shows that
Ef[Vo(z)] = inf EF[(¢— X)),
Vo(@)] = int E*[(¢ — X7°)

which implies that A* is optimal.

Show that the following recursion holds

Vici(x) = A/eeﬁ‘f(i?_fl,m EF [V} (x4 A1 (S — Si—1)) ‘.7-},1}, P-a.s., t € {1,...,T}, with Vp(z) = (€ — 2)*

By part the previous questions, we have for every fixed A’ € A5(t — 1,0) that the process V(X.‘T’A,)
is a sub-martingale. Hence, we get

Vi (2) = Vil (X72) S EF[VA(XP2) | Fict] = EP (Vi (2 4+ A1 (Se — Sem1)) |Fimn]-
Taking the essinf on both sides leads to

Viea@) <, essinf EF[Vio + ALy (S0 = S1-1))[Fi-a]

To show the converse inequality, we fix A € Ay(t — 1,0) and then compute

T-1

B (VX7 | Fioa] < EF [E (6 e datsi—s0) - X o -s) |7 fu]
T-1 2 o
= EP[(& —x— Y Aj(Sja - Sj)) ftl},

j=t—1



where the inequality is obtained by observing that the strategy given by Aj :=0for j€{0,...,t—1}
and A; :=A; is in Ay(t — 1,0). Taking the essinf on both sides leads to

T—1 2
essinf  EP[Vi(X}"®)|Fi_1] <  essinf EF [(5 —r— Z Aj(Sj — Sj))

A€M (t-1,0) ATEA2(t-1,0) )

ftl} = Vi1().

Finally Vr(z) = (¢ — 2)? is clear by definition.

Prove by backward induction that for any ¢ € {0,...,T}
Vi(z) = Ax® + 2Byx + C,
where A;, B;, C; are F;-measurable random variables, with 0 < A; < 1and Ay =1, By = —¢, Cp = £2.
For t =T, we have Vr(z) = (¢ — 2)? = 22 — 2éx + €2. So Ar =1, Br = —¢, and O = £2, as announced.

Induction step: suppose that V;(r) = A2 + 2B,z + C; with 0 < A4; < 1. By the previous question, we
need to compute

- P
Vi-i(@) = AGE\SQS(ItIifLO) E [Vt (z + A}_1 (S = Si-1)) ‘]:t—l}

= AES\SZS(itIlfLO) {EP |:At (.T —+ At—l(St - St_l))Q + QBt (.’K + At—l(St - St—l)) -+ Ct

=)

essinf {EP [Ath + 2Bt.’l? + Ot‘ft—l] + 2At_1]EP [IAt(St — St—l) + Bt(St — St—l)‘]:t—l]
A€As(t—1,0)

+ AL EP[Au(S) — Si-1)% Fia] |-

This amounts to the optimisation over A, ; of a quadratic polynomial, and therefore depends on
whether the leading coefficient is 0 or not.

On the event G;_1 := {IEP [At(St — St_1)2|]-"t_1] = O}, we first observe by Cauchy—Schwarz’s inequality
for conditional expectations that

2
B[4S = Si-)|Foet]” = BF [ VAN AUS, = $10)|Fica] < EF[AFaJER [44S, = 5p1)?|Fica] = 0.

On the other hand, note that B? < A,C; because V;(z) > 0. This implies {4; = 0} C {B; = 0}, and
thus
EP[Ay(S) — Si1)1q, ] = EF []EP [A(S — st_1)2|ft_1]1g,,71} —0.

Using A;(S;—S:-1)?1¢g,_, > 0, P-a.s., we obtain A,(S;—S;_1)?1¢g,_, = 0, P-a.s. Thus B;(S;—S;_1)*1g,_, =
0, P-a.s., and hence B;(S; — S;_1)1g,_, = 0, P-a.s. This yields EF[B;(S; — S;_1)|Fi_1]1lq,_, = 0, P-a.s.
To sum up, we have obtained the implication

]EIFD [At(St - St71)2’]:t71} =0= ]EP [At(St - St71)|]:t71:| = 0, and EP [Bt(St - Stfl)‘]:tfl] =0.
Now the optimisation problem on G;_; thus becomes

Vioi(z) =  essinf  EY[Aw® + 2B,z + G| Fy—1] = EF [Aj2® + 2Bz + Cy| Fi—].
A€ A, (t—1,0)
ThUS Vvtf](fﬂ) = At,1x2 + 2Bt,1$ + thla With Atfl = ]E]P[Atl]:tfl], Btfl = ]E]P)[Bt|]:t71], Ct,1 = EP[C”ftfl].
This yields 0 < A;_; < 1, and verifies the induction step. Moreover, since the objective functional
does not depend on A;_;, we can choose it arbitrarily.

On Q\ Gy 1 = {EP [At(St — St_1)2|.7-'t_1] > O}, the optimiser is

EF[(xA: + By) (St — Si—1)|Fe—1] .

A* —
i—1(2) EP[A,(S; — S;—1)2[F1_1]




With the convention 0/0 := 0, we ensure that A}_,(x) is well-defined on both G;_; and 2\ G;_1. Now
substituting A7_,(z) in the above gives after some computations

Via(o) =2 (7] - (S Sy

EF[A(Sy — St-1)?|Fi—1]

a1 - LA S A BS S F]

EP[A(Sy — Si—1)%|Fi—1]
(EF[Bi(S: — Si—1)|Fi1])?

+ EF[C Fiq] — .
Gl el = A, (5, = 81 F]

We can thus set

(EF[A(S; — Si—1)|Fi1])?

EF[A(Sy — St-1)2|Fi-1] ’

EP[Ai(S: — Si—1)| FeaJEP[Be(Si — Sp—1)|Fi-1]
EP[A (S — Sp—1)2|Fe-1] ’

(EF[Bi(St — Si—1)|Fe-1])?

EF[A4(Sy — Sp—1)2|Fi-1] 7

Ay =B [A|Fq] —

By 1 :=EF[B|F,_1] —

Cf/,l = EP[Ct‘ftfl] -

and check that A;_; takes values in (0,1) by Cauchy—Schwarz’s inequality. This ends the proof.

6) Use the DPP to construct a candidate for an optimal strategy A*.
Note that by the DPP and what precedes, we have

Vici(vi—1) = Aeiss(itrifl 0 EF [Vi(vim1 + A1 (S — Stfl)‘]:tfl]

= Aei\sf(itrifl,O) EP |:At (’Ut_l + At—l(St — St_l))z + 2B; (Ut—l + At_l(St — St—l)) + Ct‘]:t—l]-

Setting the differential w.r.t A; ; to 0, we see that the first order condition is
2E" [A¢ (vi—1 + Ay—1(Se — Se-1)) (Sp = Se—1)| Fom1] + 2E° [By(Sy — Sp—1)| Fi-1] = 0.
Using the measurability of A;, B;, and C;, we get that the optimal A} ,(v;_1) for a given v;_; is

~ EF[By(St — S-1)|Fi-a] EP[A| 1] )
EP[At(St - St—1)2|~7:t—1] EP[At(St - St—1)2|.7:t—1] ot

A (vi) =

‘We can thus proceed recursively and have

~ E¥[Bi(Sy = Se-1)|Fioa] E"[A4|Fi-1]
EP[At(St - Stfl)Q‘ftfl] EP[At(St - Stfl)Q‘ftfl]

* o z,A*
A} = X5

Thus A* give a candidate for an optimal strategy.



