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Assignment 12 - solutions

On utility maximisation
Consider a general arbitrage-free single-period market, where the interest rate is taken to be 0. Fix x > 0 and let
U : [0,∞) −→ R be a concave, increasing (utility) function, continuously differentiable on (0,∞), such that

sup
ξ∈A(x)

EP[U(x+ ξ · (S1 − S0)
)]
<∞, (0.1)

with
A(x) :=

{
ξ ∈ Rd : x+ ξ · (S1 − S0) ≥ 0, P–a.s.

}
.

Furthermore, assume that the supremum is attained in an interior point ξ? of A(x).

1) Show that
U ′
(
x+ ξ? · (S1 − S0)

)
|S1 − S0| ∈ L1(R,F ,P),

and the first order condition
EP[U ′(x+ ξ? · (S1 − S0)

)
(S1 − S0)

]
= 0.

Let η be any non-zero vector. Then, by the assumption that ξ? is an interior point of A(x), we have

x+ ξ? · (S1 − S0) > 0, P–a.s.,

so that for any ε > 0 small enough, we will have

x+ (ξ? + εη) · (S1 − S0) ≥ 0, P–a.s.,

and thus ξ? + εη ∈ A(x). Define then for ε small enough

∆η
ε :=

U
(
x+ (ξ? + εη) · (S1 − S0)

)
− U

(
x+ ξ? · (S1 − S0)

)
ε

.

On the set
{
η · (S1 − S0) = 0

}
, ∆η

ε is equal to 0, and on the set
{
η · (S1 − S0) 6= 0

}
∆η
ε = η · (S1 − S0)

U
(
x+ (ξ? + εη) · (S1 − S0)

)
− U

(
x+ ξ? · (S1 − S0)

)
εη · (S1 − S0) ,

so ∆η
ε is monotonically1 decreasing to η · (S1−S0)U ′

(
x+ξ? · (S1−S0)

)
as ε↘ 0. Note that by concavity

of U , U ′(0) is well-defined as the right-derivative of U at 0.

From (0.1) we know that U
(
x + ξ · (S1 − S0)

)
∈ L1(R,F ,P) for all ξ ∈ A(x), and so ∆η

ε ∈ L1(R,F ,P)
as well. Next note that ε 7−→ ∆η

ε is decreasing. Hence for ε ↘ 0, ∆η
ε ↗ and we can use monotone

convergence to deduce

−∞ < EP[∆η
ε ] ≤ EP[U ′(x+ ξ? · (S1 − S0))η · (S1 − S0)

]
= lim
ε↘0

EP[∆η
ε ] ≤ 0.

Therefore, U ′
(
x+ ξ? · (S1 − S0)

)
η · (S1 − S0) ∈ L1(R,F ,P).

Finally, since η can be chosen arbitrarily, U ′
(
x+ ξ? · (S1 − S0)

)
(S1 − S0) ∈ L1(R,F ,P) and

η · EP[U ′(x+ ξ? · (S1 − S0))(S1 − S0)] ≤ 0,

with η := EP[U ′(x+ ξ? · (S1 − S0))(S1 − S0)] implies

EP[U ′(x+ ξ? · (S1 − S0))(S1 − S0)
]

= 0.

1This is easily seen by splitting into two cases depending on the sign of η · (S1 − S0).
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2) Show that Q given by
dQ
dP := U ′(x+ ξ? · (S1 − S0))

EP[U ′(x+ ξ? · (S1 − S0))] ,

is a risk-neutral measure.

By 1), Q satisfies the martingale property, and is equivalent to P since U ′ > 0. The only thing to
check is that Q is well-defined, that is to say that U ′(x+ ξ? · (S1 − S0)) ∈ L1(R,F ,P). Observe that

U ′(x+ ξ? · (S1 − S0)) = U ′(x+ ξ? · (S1 − S0))1{ξ?·(S1−S0)≤−x/2} + U ′(x+ ξ? · (S1 − S0))1{ξ?·(S1−S0)≥−x/2}.

The second term is bounded by U ′(x/2) since U ′ is non-increasing. Again using 1)

EP
[
U ′(x+ ξ? · (S1 − S0))1{ξ?·(S1−S0)≤−x/2}

]
≤ EP

[
−ξ? · (S1 − S0)

x/2 U ′(x+ ξ? · (S1 − S0))1{ξ?·(S1−S0)≤−x/2}

]
≤ 2
x
EP
[∣∣ξ? · (S1 − S0)

∣∣U ′(x+ ξ? · (S1 − S0)
)]
<∞,

which ends the proof.

Why do we need super-martingale deflators?
We put ourselves in the setting of the duality approach to utility maximisation. The goal of this exercise is to illustrate
why we need, for fixed z > 0, to work with the larger set Z(z) in the dual problem j(z), instead of the set zM(S) of
densities of risk-neutral measures (multiplied by z).

We construct a one-period market defined on a countable probability space Ω. Let (pn)n∈N be a sequence of strictly
positive numbers such that

∞∑
n=0

pn = 1, and lim
n→+∞

pn = 0.

We also let (xn)n∈N be a sequence of positive real numbers starting at x0 = 2 and also decreasing to 0 and n goes to
+∞, but less fast than (pn)n∈N, in a sense to be made precise later on.

Finally, we consider a market with constant non-risky asset and one risky asset, starting from S0 = 1, and such that
the P-distribution of S1 is given by

P[S1 = xn] = pn, n ∈ N.

We equip the probability space with the natural filtration of S.

1) Show that the market is arbitrage free, and argue thatM(S) 6= ∅. Is the market complete?
Let ∆ ∈ R be an arbitrage opportunity. Then we must have

X0,∆
1 = ∆(S1 − S0) = ∆(S1 − 1) ≥ 0, P–a.s., and P

[
∆(S1 − 1) > 0

]
> 0.

If ∆ < 0, then we must have S1 ≤ 1, P–a.s., which is not possible since x0 = 2, and p0 > 0. Similarly,
for ∆ > 0, the arbitrage condition would imply S1 ≥ 1, P–a.s., which again is not possible since
xn → 0 as n → ∞, and all the (pn)n∈N are positive. The only possibility is to have thus ∆ = 0, in
which case ∆ cannot be an arbitrage opportunity. The first FTAP then ensures that M(S) 6= ∅.

The market is not complete however. Indeed, given a contingent claim with payoff ξ, in order
to replicate it one has to solve the system of equations ξ = x + ∆(S1 − 1). This is a system with
infinitely many equations, but only two unknowns. Hence for general ξ, the system does not admit
a solution. For example, the claim ξ = (S1 − 1)2 is not replicable.
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2) Determine an interval [a, b] ⊂ R such that V(1) = [a, b], that is to say X1,∆
1 ≥ 0, P–almost surely, if and only if

∆ ∈ [a, b].

The condition X1,∆
1 = 1 + ∆(S1 − 1) ≥ 0, P–a.s. is equivalent to the conditions

1 + ∆(xn − 1) ≥ 0, n ∈ N.

With n = 0, we get ∆ ≥ −1, and letting n go to +∞, we get ∆ ≤ 1. Now conversely, since (xn)n∈N
takes values in [0, 2], whenever ∆ ∈ [−1, 1], we have for any n ∈ N such that xn ≥ 1

1 + ∆(xn − 1) ≥ 2− xn ≥ 0,

and for any n ∈ N such that xn < 1

1 + ∆(xn − 1) ≥ xn ≥ 0.

Hence a = −1 and b = 1.

3) Assume for this question and all the remaining ones that the following series (whose terms are negative for n large
enough) are well-defined ∑

n∈N
pn log(xn),

∑
n∈N

pn
xn − 1
xn

,

and that ∑
n∈N

pn
xn − 1
xn

> 0.

Maximise the function
f(∆) := EP[ log(X1,∆

1 )
]
,

over [a, b]. Derive the optimal investment ∆? ∈ V(1).

We have first
f(∆) =

∑
n∈N

pn log
(
1 + ∆(xn − 1)

)
,

where we still need to ensure that the series is well-defined. Notice first that for any ∆ ∈ (−1, 1),
and for any n ∈ N, we have

log
(
1− |∆|

)
≤ log

(
1 + ∆(xn − 1)

)
≤ log

(
1 + |∆|

)
.

This ensures that for any ∆ ∈ (−1, 1), the series
∑
n∈N pn log

(
1 + ∆(xn − 1)

)
is absolutely convergent.

In addition, we have, still for any ∆ ∈ (−1, 1)

− pn
1−∆ ≤

d
d∆
(
pn log

(
1 + ∆(xn − 1)

))
= pn(xn − 1)

1 + ∆(xn − 1) ≤
pn

1 + ∆ .

Hence for any ε > 0 small enough, and any ∆ ∈ (−1 + ε, 1− ε), we can control log
(
1 + ∆(xn − 1)

)
and

d
d∆
(
pn log

(
1+∆(xn−1)

))
, uniformly in ∆, by the terms of absolutely convergent series. This ensures

that f is not only well-defined on (−1, 1), but also C1 on (−1, 1).

The additional assumptions in this question also ensure that f and f ′ are both also well-defined
at 1, and continuous there. Moreover, notice that the map ∆ 7−→ pn(xn−1)

1+∆(xn−1) is non-increasing, so
that for any ∆ ∈ (−1, 1], we have f ′(∆) ≥ f ′(1) > 0, by assumption. This shows that f attains its
maximum over (−1, 1] at 1, and since V(1) = [−1, 1], we actually found that ∆? = 1.
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4) Compute explicitly (in terms of (xn)n∈N and (pn)n∈N) the value function v(x) for logarithmic utility. Show that
v′(1) = 1.

We recall that
v(x) = sup

∆∈V(x)
EP[ log(Xx,∆

1 )
]

= sup
∆∈V(x)

EP[ log(xX1,∆
1 )

]
,

which by the previous question is maximised for ∆? = 1. Hence

v(x) = EP[ log(xX1,1
1 )
]

=
∑
n∈N

pn log(xxn) = log(x) +
∑
n∈N

pn log(xn),

from which it is immediate that v′(1) = 1.

5) Compute the corresponding dual optimiser Z? ∈ Z(1).

By the Lecture notes (all the hypotheses necessary here are satisfied, as you can check directly),
for any x > 0 and z > 0, the solution h?x of the primal problem

v(x) = sup
∆∈V(x)

EP[U(Xx,∆
1 )] = sup

h∈C(x)
E[U(h)],

and the solution ξ?z of the dual problem

j(z) = inf
Z∈Z(z)

EP[J(Z1)] = inf
ξ∈D(z)

EP[J(ξ)],

are related by
h?x = I(ξ?zx

),

where I = (U ′)−1, and zx > 0 is given by the relation x = −j′(zx).

Here we have shown that h?x = Xx,1
1 = x− 1 + S1 for any x > 0. Besides, I(y) = y−1. Hence, taking x

so that zx = 1 (that is to say taking x = −j′(1), we get

ξ?1 = 1
−j′(1)− 1 + S1

.

Now recall that v and j are convex conjugate, which in particular shows that j′(1) = −(v′)(−1)(1) = −1
by the previous question. Hence

ξ?1 = 1
S1
.

6) Assume now that ∑
n∈N

pn
xn

< 1.

Conclude that Z? ∈ Z(1) is not a martingale, but only a super-martingale. In particular, Z? is not the density
process of a martingale measure for the process S, and hence the infimum

inf
Q∈M(S)

EQ
[
J

(
dQ
dP

)]
,

is not attained.

From the previous question, the optimal process Z? ∈ Z(1) is such that Z?0 = 1 and Z?1 = S−1
1 . Next,

we have
EP[Z?1 ] =

∑
n∈N

pn
xn

< 1 = Z?0 ,

proving thus that Z? cannot be a super-martingale.
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7) Provide an example of (xn)n∈N and (pn)n∈N such that the following series are well-defined∑
n∈N

pn log(xn),
∑
n∈N

pn
xn − 1
xn

,

and such that ∑
n∈N

pn
xn − 1
xn

> 0,
∑
n∈N

pn
xn

< 1.

One can take for instance

p0 := 1− α, pn := α

2n , xn := 1
n
, n ∈ N \ {0},

where α > 0 is chosen small enough so that

1− α
2 − α

+∞∑
n=1

n− 1
2n = 1− α

2 − α = 1− 3α
2 > 0,

that is to say α < 2/3.
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