Introduction to Mathematical Finance
Dylan Possamai

Assignment 12 - solutions

On utility maximisation

Consider a general arbitrage-free single-period market, where the interest rate is taken to be 0. Fix z > 0 and let
U : [0,00) — R be a concave, increasing (utility) function, continuously differentiable on (0, cc0), such that

sup EF [U(z+¢-(S1—50))] < oo, (0.1)
£eA()

with
A() = {¢ eR 1z + & (S1 — Sp) >0, P-as.}.

Furthermore, assume that the supremum is attained in an interior point £* of A(zx).

1) Show that
U'(z+ € (81— Sp))[S1 — So| € LY(R, F, P),

and the first order condition
EF [UI(LL' + f* . (Sl — So))(Sl — So)] =0.

Let n be any non-zero vector. Then, by the assumption that ¢* is an interior point of A(z), we have
x+& - (S1—Sp) >0, P-as.,
so that for any £ > 0 small enough, we will have
x+ (& +en)-(S1—So) >0, P-as.,
and thus {* 4+ en € A(x). Define then for £ small enough

Al = Uz + (& +en) - (S1—5)) —U(z+& - (S —So))'

On the set {77- (81— S0) = O}, Al is equal to 0, and on the set {n~ (S1—Sy) # 0}

Uz + (& +en)- (S1—S0) —U(z+ & (S1— S))
en - (51— So) ’

Al =n-(S1— So)

so A" is monotonically' decreasing to 7-(S; — So)U’ (x—i—f* (51— So)) as € \, 0. Note that by concavity
of U, U’(0) is well-defined as the right-derivative of U at 0.

From (0.1) we know that U(z + ¢ - (S1 — So)) € LY(R, F,P) for all £ € A(z), and so A? € L}(R,F,P)
as well. Next note that ¢ — A7 is decreasing. Hence for ¢ N\, 0, A7 / and we can use monotone
convergence to deduce

—o0 < EF[A] <EF[U'(z +&* - (S1— S0))n - (S1 — So)] = ﬁ\H}]EP[AQ <0.
Therefore, U’ (x4 £* - (S1 — So))n - (S1 — So) € LY(R, F, P).
Finally, since 7 can be chosen arbitrarily, U’(z + £ - (S1 — So)) (S1 — So) € L*(R, F,P) and
n-EF[U' (@ + & - (S1— S0))(S1 — S0)] <0,
with n:=EF[U'(z 4 & - (S1 — S0))(S1 — So)] implies

EP[U/(.’L' + f* . (Sl — So))(Sl — So)] =0.

IThis is easily seen by splitting into two cases depending on the sign of 7 - (S1 — So).



2) Show that Q given by
dQ Uz +£& (51— 5))
dP *© EP[U'(z +&* - (S1 — So))]’

is a risk-neutral measure.

By 1), Q satisfies the martingale property, and is equivalent to P since U’ > 0. The only thing to
check is that Q is well-defined, that is to say that U’(z +¢* - (S; — Sp)) € LY(R, F,P). Observe that

Ullw +&" - (81 = 50)) = U@ + & (S1 = S0))Lier- (51 -s0)<—ay2) + U (2 + €7 (S1 = 50)) Ler- (5, -50)2—w/2)-
The second term is bounded by U’(x/2) since U’ is non-increasing. Again using 1)

—& - (51— S0)

EP U/(:C + f* ° (Sl - S()))]_{&*,(SI_SO)S_;C/Q}} S E]P|: x/2

U'(x 4 & - (S1 = 50))1{gx.(81—So)<—a/2}
2
< ZEF[J6 - (1 - So)|U" (2 + €7+ (81— So))| < o0,

which ends the proof.

Why do we need super-martingale deflators?

We put ourselves in the setting of the duality approach to utility maximisation. The goal of this exercise is to illustrate
why we need, for fixed z > 0, to work with the larger set Z(z) in the dual problem j(z), instead of the set zM(S) of
densities of risk-neutral measures (multiplied by z).

We construct a one-period market defined on a countable probability space 2. Let (p,)nen be a sequence of strictly
positive numbers such that

oo
an =1, and lim p, =0.
—o n—-+o0o

We also let (z,,)nen be a sequence of positive real numbers starting at o = 2 and also decreasing to 0 and n goes to
+00, but less fast than (p,)nen, in a sense to be made precise later on.

Finally, we consider a market with constant non-risky asset and one risky asset, starting from Sy = 1, and such that
the P-distribution of S; is given by
P[S1 = z,]) = pn, n € N.

We equip the probability space with the natural filtration of S.

1) Show that the market is arbitrage free, and argue that M(S) # 0. Is the market complete?
Let A € R be an arbitrage opportunity. Then we must have

XP% = A(S) — Sp) = A(S; — 1) >0, P-as., and P[A(S; — 1) > 0] > 0.

If A <0, then we must have S; <1, P—a.s., which is not possible since zy = 2, and py > 0. Similarly,
for A > 0, the arbitrage condition would imply S; > 1, P—a.s., which again is not possible since
z, — 0 as n — oo, and all the (p,),en are positive. The only possibility is to have thus A = 0, in
which case A cannot be an arbitrage opportunity. The first FTAP then ensures that M(S) # (.

The market is not complete however. Indeed, given a contingent claim with payoff £, in order
to replicate it one has to solve the system of equations { = z + A(S; — 1). This is a system with
infinitely many equations, but only two unknowns. Hence for general £, the system does not admit
a solution. For example, the claim ¢ = (S; — 1)? is not replicable.



2)

Determine an interval [a,b] C R such that V(1) = [a, b], that is to say Xll’A > 0, P-almost surely, if and only if
A € [a,b].

The condition Xll’A =1+ A(S; —1) >0, P-a.s. is equivalent to the conditions
1+ A(z, —1) >0, neN.

With n = 0, we get A > —1, and letting n go to +c0, we get A < 1. Now conversely, since (2, )nen
takes values in [0,2], whenever A € [—1, 1], we have for any n € N such that z,, > 1

1+ Az, —1)>2—12, >0,
and for any n € N such that z, <1
1+ Az, —1) >z, >0.

Hence ¢ = —1 and b = 1.

Assume for this question and all the remaining ones that the following series (whose terms are negative for n large

enough) are well-defined
T, —1
an log(zn), an P
neN neN "

Ty, — 1
Z Pn n > 0.
neN In

and that

Maximise the function A
F(A) == E"[log(X1%)],

over [a, b]. Derive the optimal investment A* € V(1).

‘We have first
F(A) = palog (1 + Az, — 1)),

neN

where we still need to ensure that the series is well-defined. Notice first that for any A € (—1,1),
and for any n € N, we have

log (1 —[A[) <log (14 A(z, — 1)) <log (1 +|A]).

This ensures that for any A € (—1,1), the series Y, pylog (1 + A(z, — 1)) is absolutely convergent.
In addition, we have, still for any A € (—1,1)

Pn i _ _ pn(-rn_l) Pn
1o = gapeles (LA =) = 7500— < 7%

Hence for any ¢ > 0 small enough, and any A € (—1+¢,1 —¢), we can control log (1 + Az, — 1)) and
% (pn log (1 + Az, — 1))), uniformly in A, by the terms of absolutely convergent series. This ensures
that f is not only well-defined on (—1,1), but also C! on (—1,1).

The additional assumptions in this question also ensure that f and f’ are both also well-defined

. . o (Tn—1) . .
at 1, and continuous there. Moreover, notice that the map A — % is non-increasing, so

that for any A € (—1,1], we have f'(A) > f'(1) > 0, by assumption. This shows that f attains its
maximum over (—1,1] at 1, and since V(1) = [-1, 1], we actually found that A* = 1.



4) Compute explicitly (in terms of (., )nen and (pn)nen) the value function v(z) for logarithmic utility. Show that
V(1) =1

‘We recall that

v(xz) = sup Ep[log(Xf’A)] = sup Ep[log(xXll’A)],
AEV(z) AEV(z)

which by the previous question is maximised for A* = 1. Hence

v(x) = EP[log X an log(zxy,) = log(z) + an log(zy,),
neN neN

from which it is immediate that v'(1) = 1.

5) Compute the corresponding dual optimiser Z* € Z(1).

By the Lecture notes (all the hypotheses necessary here are satisfied, as you can check directly),
for any x > 0 and z > 0, the solution h} of the primal problem

o(@) = sup EFUCXE)] = sup B[U(H),
AeV(x) heC(x)

and the solution ¢} of the dual problem

i) = it EI(Z)] = inf )

are related by
hy =1(&2,),

where [ = (U’)"!, and 2, > 0 is given by the relation x = —j'(2,).

Here we have shown that h} = Xf"l =x—1+S; for any = > 0. Besides, I(y) = y~!. Hence, taking z
so that z, = 1 (that is to say taking = = —j'(1), we get

= = s
) -148)
Now recall that v and j are convex conjugate, which in particular shows that j'(1) = —(v/)(=1(1) = -1
by the previous question. Hence
G=o
1 — Sl .
6) Assume now that
Pn
neN In

Conclude that Z* € Z(1) is not a martingale, but only a super-martingale. In particular, Z* is not the density
process of a martingale measure for the process S, and hence the infimum

dQ
f EQ
QEI/I\IA(S) [J<dp>}

From the previous question, the optimal process Z* € Z(1) is such that Z} =1 and Z7 = 51—1. Next,

we have »
Prrrx n *
Z7| = —<1=2,
==z
neN

is not attained.

proving thus that Z* cannot be a super-martingale.



7) Provide an example of (2, )nen and (pn)nen such that the following series are well-defined

Ty, — 1
jz:pnlog(xn% j{:pn T, )

neN neN

and such that

One can take for instance

po:zl—a,pnzz%,xn::%,neN\{O},
where « > 0 is chosen small enough so that

11—« Xn-1 l-«o Ja

?—a; 5 = 5 —a:1—7>0,

that is to say a < 2/3.



