Introduction to Mathematical Finance Dylan Possamaï

Assignment 12 - solutions

On utility maximisation

Consider a general arbitrage-free single-period market, where the interest rate is taken to be 0. Fix x > 0 and let $U: [0, \infty) \longrightarrow \mathbb{R}$ be a concave, increasing (utility) function, continuously differentiable on $(0, \infty)$, such that

$$\sup_{\xi \in \mathcal{A}(x)} \mathbb{E}^{\mathbb{P}} \left[U \left(x + \xi \cdot (S_1 - S_0) \right) \right] < \infty, \tag{0.1}$$

with

$$\mathcal{A}(x) := \left\{ \xi \in \mathbb{R}^d : x + \xi \cdot (S_1 - S_0) \ge 0, \ \mathbb{P}\text{-a.s.} \right\}$$

Furthermore, assume that the supremum is attained in an interior point ξ^* of $\mathcal{A}(x)$.

1) Show that

$$U'(x+\xi^{\star}\cdot(S_1-S_0))|S_1-S_0|\in\mathbb{L}^1(\mathbb{R},\mathcal{F},\mathbb{P}),$$

and the first order condition

$$\mathbb{E}^{\mathbb{P}}\left[U'\left(x+\xi^{\star}\cdot(S_{1}-S_{0})\right)(S_{1}-S_{0})\right]=0.$$

Let η be any non-zero vector. Then, by the assumption that ξ^* is an interior point of $\mathcal{A}(x)$, we have

$$x + \xi^* \cdot (S_1 - S_0) > 0, \ \mathbb{P}-a.s.,$$

so that for any $\varepsilon > 0$ small enough, we will have

$$x + (\xi^{\star} + \varepsilon \eta) \cdot (S_1 - S_0) \ge 0, \mathbb{P}$$
-a.s.,

and thus $\xi^* + \varepsilon \eta \in \mathcal{A}(x)$. Define then for ε small enough

$$\Delta_{\varepsilon}^{\eta} := \frac{U\left(x + (\xi^{\star} + \varepsilon\eta) \cdot (S_1 - S_0)\right) - U\left(x + \xi^{\star} \cdot (S_1 - S_0)\right)}{\varepsilon}.$$

On the set $\{\eta \cdot (S_1 - S_0) = 0\}$, $\Delta_{\varepsilon}^{\eta}$ is equal to 0, and on the set $\{\eta \cdot (S_1 - S_0) \neq 0\}$

$$\Delta_{\varepsilon}^{\eta} = \eta \cdot (S_1 - S_0) \frac{U(x + (\xi^* + \varepsilon \eta) \cdot (S_1 - S_0)) - U(x + \xi^* \cdot (S_1 - S_0))}{\varepsilon \eta \cdot (S_1 - S_0)}$$

so $\Delta_{\varepsilon}^{\eta}$ is monotonically¹ decreasing to $\eta \cdot (S_1 - S_0)U'(x + \xi^* \cdot (S_1 - S_0))$ as $\varepsilon \searrow 0$. Note that by concavity of U, U'(0) is well-defined as the right-derivative of U at 0.

From (0.1) we know that $U(x + \xi \cdot (S_1 - S_0)) \in \mathbb{L}^1(\mathbb{R}, \mathcal{F}, \mathbb{P})$ for all $\xi \in \mathcal{A}(x)$, and so $\Delta_{\varepsilon}^{\eta} \in \mathbb{L}^1(\mathbb{R}, \mathcal{F}, \mathbb{P})$ as well. Next note that $\varepsilon \mapsto \Delta_{\varepsilon}^{\eta}$ is decreasing. Hence for $\varepsilon \searrow 0$, $\Delta_{\varepsilon}^{\eta} \nearrow$ and we can use monotone convergence to deduce

$$-\infty < \mathbb{E}^{\mathbb{P}}[\Delta_{\varepsilon}^{\eta}] \le \mathbb{E}^{\mathbb{P}}[U'(x+\xi^{\star}\cdot(S_1-S_0))\eta\cdot(S_1-S_0)] = \lim_{\varepsilon\searrow 0} \mathbb{E}^{\mathbb{P}}[\Delta_{\varepsilon}^{\eta}] \le 0.$$

Therefore, $U'(x + \xi^* \cdot (S_1 - S_0))\eta \cdot (S_1 - S_0) \in \mathbb{L}^1(\mathbb{R}, \mathcal{F}, \mathbb{P}).$

Finally, since η can be chosen arbitrarily, $U'(x + \xi^* \cdot (S_1 - S_0))(S_1 - S_0) \in \mathbb{L}^1(\mathbb{R}, \mathcal{F}, \mathbb{P})$ and

$$\eta \cdot \mathbb{E}^{\mathbb{P}} \left[U'(x + \xi^* \cdot (S_1 - S_0))(S_1 - S_0) \right] \le 0$$

with $\eta := \mathbb{E}^{\mathbb{P}} \big[U'(x + \xi^{\star} \cdot (S_1 - S_0))(S_1 - S_0) \big]$ implies

$$\mathbb{E}^{\mathbb{P}}\left[U'(x+\xi^{\star}\cdot(S_{1}-S_{0}))(S_{1}-S_{0})\right]=0.$$

¹This is easily seen by splitting into two cases depending on the sign of $\eta \cdot (S_1 - S_0)$.

2) Show that \mathbb{Q} given by

$$\frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\mathbb{P}} := \frac{U'(x+\xi^{\star}\cdot(S_1-S_0))}{\mathbb{E}^{\mathbb{P}}[U'(x+\xi^{\star}\cdot(S_1-S_0))]},$$

is a risk-neutral measure.

By 1), \mathbb{Q} satisfies the martingale property, and is equivalent to \mathbb{P} since U' > 0. The only thing to check is that \mathbb{Q} is well-defined, that is to say that $U'(x + \xi^* \cdot (S_1 - S_0)) \in \mathbb{L}^1(\mathbb{R}, \mathcal{F}, \mathbb{P})$. Observe that

$$U'(x+\xi^{\star}\cdot(S_1-S_0)) = U'(x+\xi^{\star}\cdot(S_1-S_0))\mathbf{1}_{\{\xi^{\star}\cdot(S_1-S_0)\leq -x/2\}} + U'(x+\xi^{\star}\cdot(S_1-S_0))\mathbf{1}_{\{\xi^{\star}\cdot(S_1-S_0)\geq -x/2\}}.$$

The second term is bounded by U'(x/2) since U' is non-increasing. Again using 1)

$$\mathbb{E}^{\mathbb{P}}\Big[U'(x+\xi^{\star}\cdot(S_{1}-S_{0}))\mathbf{1}_{\{\xi^{\star}\cdot(S_{1}-S_{0})\leq -x/2\}}\Big] \leq \mathbb{E}^{\mathbb{P}}\Big[\frac{-\xi^{\star}\cdot(S_{1}-S_{0})}{x/2}U'(x+\xi^{\star}\cdot(S_{1}-S_{0}))\mathbf{1}_{\{\xi^{\star}\cdot(S_{1}-S_{0})\leq -x/2\}}\Big]$$
$$\leq \frac{2}{x}\mathbb{E}^{\mathbb{P}}\Big[\big|\xi^{\star}\cdot(S_{1}-S_{0})\big|U'\big(x+\xi^{\star}\cdot(S_{1}-S_{0})\big)\Big] < \infty,$$

which ends the proof.

Why do we need super-martingale deflators?

We put ourselves in the setting of the duality approach to utility maximisation. The goal of this exercise is to illustrate why we need, for fixed z > 0, to work with the larger set $\mathcal{Z}(z)$ in the dual problem j(z), instead of the set $z\mathcal{M}(S)$ of densities of risk-neutral measures (multiplied by z).

We construct a one-period market defined on a *countable* probability space Ω . Let $(p_n)_{n \in \mathbb{N}}$ be a sequence of strictly positive numbers such that

$$\sum_{n=0}^{\infty} p_n = 1, \text{ and } \lim_{n \to +\infty} p_n = 0$$

We also let $(x_n)_{n \in \mathbb{N}}$ be a sequence of positive real numbers starting at $x_0 = 2$ and also decreasing to 0 and n goes to $+\infty$, but less fast than $(p_n)_{n \in \mathbb{N}}$, in a sense to be made precise later on.

Finally, we consider a market with constant non-risky asset and one risky asset, starting from $S_0 = 1$, and such that the \mathbb{P} -distribution of S_1 is given by

$$\mathbb{P}[S_1 = x_n] = p_n, \ n \in \mathbb{N}.$$

We equip the probability space with the natural filtration of S.

1) Show that the market is arbitrage free, and argue that $\mathcal{M}(S) \neq \emptyset$. Is the market complete?

Let $\Delta \in \mathbb{R}$ be an arbitrage opportunity. Then we must have

$$X_1^{0,\Delta} = \Delta(S_1 - S_0) = \Delta(S_1 - 1) \ge 0, \mathbb{P}$$
-a.s., and $\mathbb{P}[\Delta(S_1 - 1) > 0] > 0$

If $\Delta < 0$, then we must have $S_1 \leq 1$, P-a.s., which is not possible since $x_0 = 2$, and $p_0 > 0$. Similarly, for $\Delta > 0$, the arbitrage condition would imply $S_1 \geq 1$, \mathbb{P} -a.s., which again is not possible since $x_n \to 0$ as $n \to \infty$, and all the $(p_n)_{n \in \mathbb{N}}$ are positive. The only possibility is to have thus $\Delta = 0$, in which case Δ cannot be an arbitrage opportunity. The first FTAP then ensures that $\mathcal{M}(S) \neq \emptyset$.

The market is not complete however. Indeed, given a contingent claim with payoff ξ , in order to replicate it one has to solve the system of equations $\xi = x + \Delta(S_1 - 1)$. This is a system with infinitely many equations, but only two unknowns. Hence for general ξ , the system does not admit a solution. For example, the claim $\xi = (S_1 - 1)^2$ is not replicable.

2) Determine an interval $[a, b] \subset \mathbb{R}$ such that $\mathcal{V}(1) = [a, b]$, that is to say $X_1^{1,\Delta} \ge 0$, \mathbb{P} -almost surely, if and only if $\Delta \in [a, b]$.

The condition $X_1^{1,\Delta} = 1 + \Delta(S_1 - 1) \ge 0$, \mathbb{P} -a.s. is equivalent to the conditions

$$1 + \Delta(x_n - 1) \ge 0, \ n \in \mathbb{N}.$$

With n = 0, we get $\Delta \ge -1$, and letting n go to $+\infty$, we get $\Delta \le 1$. Now conversely, since $(x_n)_{n \in \mathbb{N}}$ takes values in [0, 2], whenever $\Delta \in [-1, 1]$, we have for any $n \in \mathbb{N}$ such that $x_n \ge 1$

$$1 + \Delta(x_n - 1) \ge 2 - x_n \ge 0,$$

and for any $n \in \mathbb{N}$ such that $x_n < 1$

$$1 + \Delta(x_n - 1) \ge x_n \ge 0.$$

Hence a = -1 and b = 1.

3) Assume for this question and all the remaining ones that the following series (whose terms are negative for n large enough) are well-defined

$$\sum_{n \in \mathbb{N}} p_n \log(x_n), \ \sum_{n \in \mathbb{N}} p_n \frac{x_n - 1}{x_n},$$

and that

$$\sum_{n\in\mathbb{N}}p_n\frac{x_n-1}{x_n}>0.$$

Maximise the function

$$f(\Delta) := \mathbb{E}^{\mathbb{P}} \left[\log(X_1^{1,\Delta}) \right],$$

over [a, b]. Derive the optimal investment $\Delta^* \in \mathcal{V}(1)$.

We have first

$$f(\Delta) = \sum_{n \in \mathbb{N}} p_n \log \left(1 + \Delta(x_n - 1) \right),$$

where we still need to ensure that the series is well-defined. Notice first that for any $\Delta \in (-1,1)$, and for any $n \in \mathbb{N}$, we have

$$\log(1-|\Delta|) \le \log(1+\Delta(x_n-1)) \le \log(1+|\Delta|).$$

This ensures that for any $\Delta \in (-1,1)$, the series $\sum_{n \in \mathbb{N}} p_n \log (1 + \Delta(x_n - 1))$ is absolutely convergent. In addition, we have, still for any $\Delta \in (-1,1)$

$$-\frac{p_n}{1-\Delta} \le \frac{\mathrm{d}}{\mathrm{d}\Delta} \left(p_n \log \left(1 + \Delta (x_n - 1) \right) \right) = \frac{p_n(x_n - 1)}{1 + \Delta (x_n - 1)} \le \frac{p_n}{1+\Delta}$$

Hence for any $\varepsilon > 0$ small enough, and any $\Delta \in (-1 + \varepsilon, 1 - \varepsilon)$, we can control $\log (1 + \Delta(x_n - 1))$ and $\frac{d}{d\Delta}(p_n \log (1 + \Delta(x_n - 1)))$, uniformly in Δ , by the terms of absolutely convergent series. This ensures that f is not only well-defined on (-1, 1), but also C^1 on (-1, 1).

The additional assumptions in this question also ensure that f and f' are both also well-defined at 1, and continuous there. Moreover, notice that the map $\Delta \mapsto \frac{p_n(x_n-1)}{1+\Delta(x_n-1)}$ is non-increasing, so that for any $\Delta \in (-1, 1]$, we have $f'(\Delta) \ge f'(1) > 0$, by assumption. This shows that f attains its maximum over (-1, 1] at 1, and since $\mathcal{V}(1) = [-1, 1]$, we actually found that $\Delta^* = 1$. 4) Compute explicitly (in terms of $(x_n)_{n \in \mathbb{N}}$ and $(p_n)_{n \in \mathbb{N}}$) the value function v(x) for logarithmic utility. Show that v'(1) = 1.

We recall that

$$v(x) = \sup_{\Delta \in \mathcal{V}(x)} \mathbb{E}^{\mathbb{P}} \Big[\log(X_1^{x,\Delta}) \Big] = \sup_{\Delta \in \mathcal{V}(x)} \mathbb{E}^{\mathbb{P}} \Big[\log(xX_1^{1,\Delta}) \Big],$$

which by the previous question is maximised for $\Delta^* = 1$. Hence

$$v(x) = \mathbb{E}^{\mathbb{P}}\left[\log(xX_1^{1,1})\right] = \sum_{n \in \mathbb{N}} p_n \log(xx_n) = \log(x) + \sum_{n \in \mathbb{N}} p_n \log(x_n),$$

from which it is immediate that v'(1) = 1.

5) Compute the corresponding dual optimiser $Z^* \in \mathcal{Z}(1)$.

By the Lecture notes (all the hypotheses necessary here are satisfied, as you can check directly), for any x > 0 and z > 0, the solution h_x^* of the primal problem

$$v(x) = \sup_{\Delta \in \mathcal{V}(x)} \mathbb{E}^{\mathbb{P}}[U(X_1^{x,\Delta})] = \sup_{h \in \mathcal{C}(x)} E[U(h)],$$

and the solution ξ_z^{\star} of the dual problem

$$j(z) = \inf_{Z \in \mathcal{Z}(z)} \mathbb{E}^{\mathbb{P}}[J(Z_1)] = \inf_{\xi \in \mathcal{D}(z)} \mathbb{E}^{\mathbb{P}}[J(\xi)],$$

are related by

$$h_x^\star = I(\xi_{z_x}^\star),$$

where $I = (U')^{-1}$, and $z_x > 0$ is given by the relation $x = -j'(z_x)$.

Here we have shown that $h_x^{\star} = X_1^{x,1} = x - 1 + S_1$ for any x > 0. Besides, $I(y) = y^{-1}$. Hence, taking x so that $z_x = 1$ (that is to say taking x = -j'(1), we get

$$\xi_1^{\star} = \frac{1}{-j'(1) - 1 + S_1}.$$

Now recall that v and j are convex conjugate, which in particular shows that $j'(1) = -(v')^{(-1)}(1) = -1$ by the previous question. Hence

$$\xi_1^\star = \frac{1}{S_1}.$$

6) Assume now that

$$\sum_{n \in \mathbb{N}} \frac{p_n}{x_n} < 1$$

Conclude that $Z^* \in \mathcal{Z}(1)$ is not a martingale, but only a super-martingale. In particular, Z^* is not the density process of a martingale measure for the process S, and hence the infimum

$$\inf_{\mathbb{Q}\in\mathcal{M}(S)}\mathbb{E}^{\mathbb{Q}}\left[J\left(\frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\mathbb{P}}\right)\right],$$

is not attained.

From the previous question, the optimal process $Z^* \in \mathcal{Z}(1)$ is such that $Z_0^* = 1$ and $Z_1^* = S_1^{-1}$. Next, we have

$$\mathbb{E}^{\mathbb{P}}[Z_1^{\star}] = \sum_{n \in \mathbb{N}} \frac{p_n}{x_n} < 1 = Z_0^{\star},$$

proving thus that Z^* cannot be a super-martingale.

7) Provide an example of $(x_n)_{n\in\mathbb{N}}$ and $(p_n)_{n\in\mathbb{N}}$ such that the following series are well-defined

$$\sum_{n \in \mathbb{N}} p_n \log(x_n), \ \sum_{n \in \mathbb{N}} p_n \frac{x_n - 1}{x_n},$$

and such that

$$\sum_{n\in\mathbb{N}} p_n \frac{x_n-1}{x_n} > 0, \ \sum_{n\in\mathbb{N}} \frac{p_n}{x_n} < 1.$$

One can take for instance

$$p_0 := 1 - \alpha, \ p_n := \frac{\alpha}{2^n}, \ x_n := \frac{1}{n}, \ n \in \mathbb{N} \setminus \{0\},$$

where $\alpha > 0$ is chosen small enough so that

$$\frac{1-\alpha}{2} - \alpha \sum_{n=1}^{+\infty} \frac{n-1}{2^n} = \frac{1-\alpha}{2} - \alpha = 1 - \frac{3\alpha}{2} > 0,$$

that is to say $\alpha < 2/3$.