
Introduction to Mathematical Finance
Dylan Possamaï

Assignment 5 (solutions)

1. On American Calls with dividends

Let S be a stock paying a known dividend amount κ at some known time τ ∈ (0, T ).

1) Prove that the following relationship holds for any t < τ

St ≥ CAt (T,K;S) ≥ max
{(
St −KB(t, τ)

)+
,
(
St − κB(t, τ)−KB(t, T )

)+
}
.

The left inequality is easy. Indeed, a portfolio containing one asset, even without dividends, is
always more valuable than one containing the American Call, since exercising the American Call
always provides less than selling an asset.

The second inequality is a bit more involved. First of all, since we already know that the value
of the American Call is non–negative (it is clear since the payoff of this option is non–negative),
it is enough to prove

CAt (T,K;S) ≥ St −KB(t, τ), and CAt (T,K;S) ≥ St − κB(t, τ)−KB(t, T ).

Let us start with the first inequality. Assume to the contrary that

CAt (T,K;S) < St −KB(t, τ),

and then buy at time t the American Call and K Zero–Coupon bonds with maturity τ , and sell
one asset. The net wealth is positive by assumption and we invest it in Zero–Coupon bonds.

At time τ , just before the dividend payment is made, we buy back the asset, exercise the
American Call and sell our Zero–Coupon bonds. Our net wealth at τ is thus

(Sτ −K)+ − Sτ +K + St −Kd(t, τ)− CAt (T,K;S)
B(t, τ)

= (K − Sτ )+ + St −KB(t, τ)− CAt (T,K;S)
B(t, τ) > 0.

Hence we have an arbitrage opportunity.

Let us assume now that
CAt (T,K;S) < St − κB(t, τ)−KB(t, T ),

and let us buy at time t the American Call, κ Zero–Coupon bonds with maturity τ and K Zero–
Coupon bonds with maturity T , and let us sell one asset. The remaining wealth is positive by
assumption and we use it to buy Zero–Coupon bonds with maturity T . At time τ we receive κ
from our Zero–Coupon bonds, which we use to pay the dividends for the asset we sold. Then at
time T , we exercise the American Call and buy back the asset. Our net wealth is

(ST −K)+ − ST +K + St − κB(t, τ)−KB(t, T )− CAt (T,K;S)
B(t, T ) > 0,

and we again have an arbitrage opportunity.

2) Assume now that S pays n known dividends (κi)1≤i≤n at the known dates (τi)1≤i≤n with 0 < τ1 < τ2 < · · · <
τn < T . Prove that for any t < τ1

St ≥ CAt (T,K;S) ≥ max
0≤i≤n

{(
St −KB(t, τi+1)−

i∑
j=1

κjB(t, τj)
)+}

,
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with the convention that τn+1 = T and that a sum over an empty set is 0.

The left inequality is the same as before. For the right one, it is again enough to prove that for
all i = 0, . . . , n, we have

CAt (T,K;S) ≥ St −KB(t, τi+1)−
i∑

j=1
κjB(t, τj).

Assume to the contrary that

CAt (T,K;S) < St −KB(t, τi+1)−
i∑

j=1
κjB(t, τj),

and buy at time t the American Call, K Zero–Coupon bonds with maturity τi+1 and for every
j = 1, . . . , i, κj Zero–Coupon bonds with maturity τj (the latter of course do not exist when i = 0),
and sell one asset. The remaining wealth is positive by assumption and we use it to buy Zero–
Coupon bonds with maturity τi+1. Then, for any j = 1, . . . , i, we receive at time τj the quantity κj
which we use to pay the dividends from the asset we sold at time t. We wait until time τi+1, at
which we exercise the American Call and buy back the asset right before the dividend payment.
At τi+1, our wealth is thus

K + (ST −K)− ST +
St −KB(t, τi+1)−

∑i
j=1 κjB(t, τj)− CAt (T,K;S)
B(t, τi+1) > 0,

hence we have an arbitrage opportunity.

3) Prove that the only dates where it can be optimal to exercise a Call option on an underlying asset paying n
known dividends (κi)1≤i≤n at the known dates (τi)1≤i≤n are the maturity T , or at the times (τi)1≤i≤n, just
before the dividends are paid. Under which condition(s) is it not optimal to exercise the American Call prior
to T?

First of all, it is clearly never optimal to exercise the Call at any time to ∈ (τn, T ), since after the
last dividend payment τn is made, the Call becomes a Call on a non–dividend paying underlying
asset, and we have seen in class that these should never be exercised early.

Now exercising at time to ∈ (τj−1, τj ] in–between two dividend payments dates can only be optimal
at time τj, just before the payment of the dividend. Indeed, adapting the proof of the previous
question, we have the inequality

CAto(T,K;S) ≥ max
0≤i≤n+1−j

{(
Sto −KB(to, τi+j) +

i∑
k=1

κk−1+jB(to, τk−1+j)
)+}

.

In particular, this implies that for i = 0

CAto(T,K;S) ≥
(
Sto −KB(to, τj)

)+ ≥
(
Sto −K)

)+
,

where the right–hand side corresponds to exercising the American Call at time to. Furthermore,
it is easy to check that equality above can only happen if to = τj, just before the dividend
payment, because interest rates are positive. Therefore, the only times where it could make
sense to exercise the American option are the maturity T , or the times (τi)1≤i≤n, just before the
dividends are paid.

Let us now examine under which conditions early exercise could actually be optimal or not.
The decision to exercise involves a trade–off between dividend income and interest income. To
illustrate this more precisely, consider a stock that pays a single dividend prior to expiration.
Just prior to the dividend date the value of an in–the–money American Call, if exercised, is its
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intrinsic value Sτ1 −K. Just after the dividend is paid, the value of the stock drops to Sτ1 − κ1,
and since there are no more dividends to be paid after τ1, we know that, just after the dividend
payment, we must have the lower bound

CAτ1
(T,K;S) ≥

(
Sτ1 − κ1 −KB(τ1, T )

)+
.

Hence, a sufficient condition for early exercise to not be optimal at time τ1 is

Sτ1 −K ≤ Sτ1 − κ1 −KB(τ1, T )⇐⇒ κ1 ≤ K
(
1−B(τ1, T )

)
.

The above equation states that early exercise will not be optimal if the dividend paid at time τ1
is less than the interests generated by the strike K over the time–period [τ1, T ].

The above reasoning can be iterated in the case of several dividend payments, and we end up
with the property that early exercise for the American Call is not optimal if, at each dividend
payment dates, the present value of all the dividend payments remaining (including the present
one) is less than the present value of interests earned on the strike until time T . In other words,
we must have for any j = 1, . . . , n

n∑
k=j

κkB(τj , τk) ≤ K
(
1−B(τj , T )

)
.

2. Asymptotics for the CRR model

We consider a variation on the multi–period binomial model from Section 2.3.2.2. We let our time horizon be
some time T > 0, and take Ω := {ωu, ωd}m, where m is a positive integer representing the number of periods in
the market. As usual, we fix F := P(Ω). We depart a little bit from the lecture notes’ notations, and consider
that the market trading dates are given by (tmk )k∈{0,...,m}, where

tmk := kT

m
, k ∈ {0, . . . ,m}.

The probability measure P on (Ω,F) is again given by

P[{ω}] = pU(ω)(1− p)m−U(ω), ∀ω := (ω1, . . . , ωm) ∈ Ω,

where p ∈ (0, 1), and where for any ω ∈ Ω, U(ω) counts the number of elements of ω which are equal to ωu. We
define the filtration F := (Fk)k∈{0,...,m} by F0 := {∅,Ω}, Fm := F and

Fk := σ
(
(ω1, . . . , ωs) : s ∈ {1, . . . , k}

)
, k ∈ {1, . . . ,m− 1}.

The non–risky asset values are given by

Sm,0tm
k

(ω) :=
(

1 + rT

m

)k
, k ∈ {0, . . . ,m}, ω ∈ Ω,

where r ∈ R, while that of the risky asset are given, for any ω ∈ Ω, by

Smtm0 (ω) := S0,

Smtm
k+1

(ω) = Smtm
k+1

(ω1, . . . , ωk+1) :=
{

(1 + hm)Smtm
k

(ω1, . . . , ωk), if ωk+1 = ωu,

(1 + `m)Smtm
k

(ω1, . . . , ωk), if ωk+1 = ωd,
k ∈ {0, . . . ,m− 1},

where

`m := rT

m
− σ−

√
T

m
, hm := rT

m
+ σ+

√
T

m
,
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for some given (σ−, σ+) ∈ (0,+∞)2. Notice that we index the asset values by m ∈ N \ {0} since the aim of the
exercise is to let m go to +∞.

We will assume throughout that m is large enough so that

`m > −1, rT
m

> −1.

1) Prove that for m large enough this market admits no–arbitrage opportunities, and that there is a unique
risk–neutral measure Qm. We let m be the lowest value of m such that this holds.

We are here in a multi–period binomial model, for which we know that (NA) is equivalent to
having, with the specification chosen here

1 + `m < 1 + rT

m
< 1 + hm,

which is obviously true. The only restriction here is that the returns of the non–risky asset
remain positive, that is rT/m > −1, and that

0 < 1 + `m < 1 + bm,

which is equivalent to having `m > −1. It is not too hard to check that whenever σ− < 2
√
r (and

r ≥ 0 obviously) this holds for any positive integer m, while when r < 0 or σ− ≥ 2
√
r, this is

equivalent to
m >

T

4

(
σ− +

√
σ2
− − 4r

)2
.

We also know that under these conditions the market is complete, and there is therefore a unique
risk–neutral measure Qm.

2) We define

pm := Qm
[{

Smtm
k+1

Smtm
k

= 1 + hm

}]
, k ∈ {0, . . . ,m− 1}.

Give the exact value of pm and justify that it indeed does not depend on k ∈ {0, . . . ,m− 1}.

We know that Qm makes the process
(
Sm

tm
k

Sm,0
tm

k

)
k∈{0,...,m}

into a martingale. In particular we must

have

S0 = EQm

[
Smtm1
S0,m
tm1

]
= pm(1 + hm)S0 + (1− pm)(1 + `m)S0

1 + rT
m

,

from which we deduce that
pm =

rT
m − `m
hm − `m

= σ−
σ+ + σ−

.

It is straightforward to check that defining Qm by

Qm[{ω}] = pU(ω)
m (1− pm)m−U(ω), ∀ω := (ω1, . . . , ωm) ∈ Ω,

does indeed lead us to a risk–neutral measure, exactly as in the lecture notes.

3) Which property does the sequence of random variables
(
Sm

tm
k+1
Sm

tm
k

)
k∈{0,...,m−1}

satisfy under Qm.

This is an i.i.d. sequence under Qm.
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4) We denote by Φm the characteristic function under Qm of the random variable log
(
Smtm1 /S

m
tm0

)
, that is to say

Φm(λ) := EQm

[
exp

(
iλ log

(
Smtm1
Smtm0

))]
.

Show that the following Taylor expansion holds

Φm(λ) = 1 +
(
iλ

(
r − σ−σ+

2

)
− λ2σ−σ+

2

)
T

m
+ ◦
(

1
m

)
.

We have

Φm(λ) = pm exp
(
iλ log(1 + hm)

)
+ (1− pm) exp

(
iλ log(1 + `m)

)
= σ−
σ+ + σ−

exp
(
iλ log

(
1 + σ+

√
T

m
+ rT

m

))
+ σ+

σ+ + σ−
exp

(
iλ log

(
1− σ−

√
T

m
+ rT

m

))
= σ−
σ+ + σ−

exp
(
iλ

(
σ+

√
T

m
+
(
r −

σ2
+
2

)
T

m
+ ◦
(
T

m

)))
+ σ+

σ+ + σ−
exp

(
iλ

(
− σ−

√
T

m
+
(
r −

σ2
−
2

)
T

m
+ ◦
(
T

m

))
= σ−
σ+ + σ−

(
1 + iλσ+

√
T

m
+
(
iλ

(
r −

σ2
+
2

)
−
λ2σ2

+
2

)
T

m
+ ◦
(
T

m

))
+ σ+

σ+ + σ−

(
1− iλσ−

√
T

m
+
(
iλ

(
r −

σ2
−
2

)
−
λ2σ2

−
2

)
T

m
+ ◦
(
T

m

))
= 1 +

(
iλ

(
r − σ−σ+

2

)
− σ−σ+

2 λ2
)
T

m
+ ◦
(
T

m

)
.

5) Let Ym := log(SmT /S0). Express the characteristic function of Ym under Qm in terms of Φm, and then show
that the sequence (Ym)m≥m converges in law, under Qm, to a random variable whose distribution you’ll give
explicitly.

Hint: It would be useful here to prove the following lemma, which provides a result that you must know for
real–valued sequences, but not necessarily for complex–valued ones.
Lemma 0.1. For any (z,R) ∈ C× (0,+∞), if |z| ≤ R, then for any positive integer n∣∣∣∣ez − (1 + z

n

)n∣∣∣∣ ≤ eR −
(

1 + R

n

)n
.

In addition, for any complex–valued sequence (zn)n∈N\{0} converging to some z ∈ C, we have

lim
n→+∞

(
1 + zn

n

)n
= ez.

Notice that

Ym = log
(
m−1∏
k=0

Smtm
k+1

Smtm
k

)
=
m−1∑
k=0

log
(
Smtm

k+1

Smtm
k

)
.

Using the fact that the sequence
(
Sm

tm
k+1
Sm

tm
k

)
k∈{0,...,m−1}

is i.i.d. under Qm, we deduce that for any

λ ∈ R

EQm[
eiλYm

]
= EQm

[
m−1∏
k=0

exp
(
iλ log

(
Smtm

k+1

Smtm
k

))]
= Φmm(λ).
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By the previous question, we know that we can write

Φmm(λ) =
(

1 + zm
m

)m
,

where
zm :=

(
iλ

(
r − σ−σ+

2

)
− σ−σ+

2 λ2
)
T + εm,

where (εm)m≥m is a sequence converging to 0. Using the result of the lemma, we thus deduce
that

lim
m→+∞

EQm[
eiλYm

]
= exp

(
iλ

(
r − σ−σ+

2

)
T − σ−σ+

2 λ2T

)
.

This shows that the sequence (Ym)m≥m converges in distribution to a Gaussian random variable
N with mean µ and variance Σ where

µ :=
(
r − σ−σ+

2

)
T, Σ := σ−σ+T.

We finish with the

Proof of Lemma 0.1. Using the development of the exponential as an entire series, we have first∣∣∣∣ez − (1 + z

n

)n∣∣∣∣ =
∣∣∣∣∑ k = 0+∞ z

k

k! −
n∑
k=0

(
n

k

)
zk

nk

∣∣∣∣ ≤ n∑
k=0
|z|k
∣∣∣∣ 1
k! −

(
n

k

)
1
nk

∣∣∣∣+
+∞∑

k=n+1

|z|k

k!

≤
n∑
k=0

Rk
∣∣∣∣ 1
k! −

(
n

k

)
1
nk

∣∣∣∣+
+∞∑

k=n+1

Rk

k! .

Now notice that for any k ∈ {0, . . . , n}(
n

k

)
1
nk

= n× (n− 1)× · · · × (n− k + 1)
nk

1
k! ≤

1
k! .

Therefore, we have∣∣∣∣ez − (1 + z

n

)n∣∣∣∣ ≤ n∑
k=0

Rk
(

1
k! −

(
n

k

)
1
nk

)
+

+∞∑
k=n+1

Rk

k! = eR −
(

1 + R

n

)n
.

Now since the sequence converges to z, it must be bounded by some R > 0. Using the first part of the lemma,
we thus have for any n ∈ N \ {0}∣∣∣∣ez − (1 + zn

n

)n∣∣∣∣ ≤ ∣∣∣∣ezn −
(

1 + zn
n

)n∣∣∣∣+ |ez − ezn | ≤ eR −
(

1 + R

n

)n
+ |ez − ezn |,

which converges to 0 as n goes to ∞.

6) Prove that for any K ≥ 0

lim
m→+∞

P0(T,K;Sm) = e−rT
∫
R

(
K − S0ea+bx)+ e− x2

2
√

2π
dx,

where you will explicit the constants a and b in terms of r, σ−, σ+, and T .

We have that

P0(T,K;Sm) = 1
S0,m
T

EQm[
(K − SmT )+] =

(
1 + rT

m

)−m
EQm

[(
K − S0eYm

)+
]
.
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Now given the convergence in law we proved in the previous question, and since the map x 7−→
(K − S0ex)+ is bounded and continuous on R, we have by weak convergence that

lim
m→+∞

P0(T,K;Sm) = e−rT
∫
R

(
K − S0ea+bx)+ e− x2

2
√

2π
dx,

where a = µ and b =
√

Σ.

7) Deduce that there exist constants d0 and d1 (which you will again provide explicitly) such that

lim
m→+∞

P0(T,K;Sm) = e−rTKN (−d0)− S0N (−d1),

where N (x) :=
∫ x
−∞

e− u2
2√

2π du, x ∈ R is the repartition function of a standard Gaussian random variable.

Prove that a similar formula holds for limm→+∞ C0(T,K;Sm).

Direct computations show that

d1 = 1√
σ−σ+T

log
(

S0

e−rTK

)
+ 1

2
√
σ−σ+T , d0 = 1√

σ−σ+T
log
(

S0

e−rTK

)
− 1

2
√
σ−σ+T .

Besides, using the Call–Put parity formula and the symmetry of the Gaussian distribution, we
deduce

lim
m→+∞

C0(T,K;Sm) = S0N (d1)− e−rTKN (d0).

8) (Optional question) Redo the whole exercise until question 5)

`m := rT

m
− σ−

T

m
, hm := rT

m
+ σ+ − σ−

T

m
.

(Notice that obviously the expansion in 4) will now be different.)

The first change is that now, in order for asset prices to remain positive, we must have rT/m > −1
and m > T (σ− − r). Then, the risk–neutral probability is now given by

pm =
rT
m − `m
hm − `m

= σ−
σ+

T

m
.

Then, similar computations as before show that

Φm(λ) = 1 +
(
iλ(r − σ−) + σ−

σ+

(
eiλ log(1+σ+) − 1

)) T
m

+ ◦
(
T

m

)
.

Then, the characteristic function under Qm of log
(
SmT /S0

)
is such that

lim
m→+∞

Φmm(λ) = eiλ(r−σ−)T exp
(
σ−
σ+

(
eiλ log(1+σ+) − 1

)
T

)
,

which is the characteristic function of a random variable X of the form

X := (r − σ−)T + log(1 + σ+)Y,

where Y has a Poisson distribution with parameter σ−
σ+
T .
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