M compact hyperbolic surface $g \in C^{\infty}(\mathbb{R})$ even

$$
h(r)=\hat{g}(r)=\int_{-\infty}^{\infty} g(u) e^{i r a} d u
$$

its Tounier transform

$$
\begin{aligned}
\sum_{j \geqslant 0} h\left(r_{j}\right) & =\frac{\operatorname{arca}(M)}{4 \pi} \int_{-\infty}^{\infty} h(r) r \tanh \left(\pi_{r}\right) d r \\
& +\sum_{\sum_{\left.\gamma_{j}\right\}}} \frac{l_{0} g(l)}{2 \sinh (l / 2)}
\end{aligned}
$$

where the sum on the LHS ranges over $x_{j}=\frac{1}{4}+r_{j}^{2}$

$$
0=\lambda_{0}<\lambda_{1} \leqslant \lambda_{2} \leqslant \ldots \quad \lambda_{j} \rightarrow \infty
$$

the spectornon of $\Delta / L^{2}(M)$
Selberg's trace formula

Today.
Huber's theorem
Two compact hyp. surfaces have the same Laplacian spectrum iff they have the serve length spectrum.
$\underline{\text { Wend's } \operatorname{law}: \text { As } \lambda \rightarrow \infty \text {, }}$ $\#\left\{j \geqslant 0: \lambda_{j}<\lambda\right\} \sim \frac{\operatorname{arca}(M)}{4 \pi} \lambda$
$e=\{$ all closed oriented geodesics on $M\}$

$\mathcal{L}=$ the corresponchng set
of lengths, ordered by ascending size
This is what is called the length spectrure, and it accounts for each length with multiplicity.

It is a discrete set. In fact:

Prop:
$\pi(L)=\#\{l \in \mathcal{L}: l \leqslant L\}=O\left(e^{L}\right)$
Proof:

$$
\begin{aligned}
& l_{\gamma_{1}}=\text { length } \\
& \gamma_{1} \\
& \leqslant l_{\gamma}+ \\
& 2 \operatorname{diam}(M) \\
& \leqslant L+2 \operatorname{dim} M .
\end{aligned}
$$

Take γ, closed geodesic on M closed passing through p $\gamma_{1} \sim \gamma$ (free homotopy) Take all $\gamma \in 己$ st. $l_{\gamma} \leq L$

Proof of Huber's thu.
Idea A Apply Selberg's trace formula to the heat kernel Hs selberg transform is

$$
h(r)=e^{-t r^{2}} \quad(t>0)
$$

$$
\sum_{j>0} e^{-\lambda_{j}^{2}}=\sum_{j \geqslant 0} e^{-\lambda_{j} t} e^{t / 4}
$$

is the LHS of the STF, so then we rewrite it as

$$
\begin{aligned}
& \sum_{j^{3 / O}} e^{-t \lambda_{j}}= \frac{\operatorname{area}(M)}{4 \pi} e^{-t / 4} \\
& \int_{-\infty}^{\infty} e^{-t r^{2}} r \tanh \left(\pi_{r}\right) d r \\
&+e^{-t / 4} \sum_{\gamma \in e} \frac{l_{0} g(l)}{2 \sinh (l / 2)}
\end{aligned}
$$

The number of lifts $\gamma, z \in H$

$$
\begin{aligned}
\text { is } & \leqslant \nexists\left\{\gamma_{\in} \Gamma: d\left(\gamma_{z}, z\right)<L+2\right. \text { diam M\} } \\
& \leqslant \operatorname{arca}\left(\begin{array}{c}
\text { hyperbolic ball of } \\
\text { radius } L+2 \text { diam } M)
\end{array}\right. \\
& =C e^{\quad}
\end{aligned}
$$

where $g(l)=\frac{1}{\sqrt{4 \pi t}} e^{-l^{2} / 4 t}$.
The LHS of this last equation is the spectral partition function for $\triangle h^{2}(n)$. Prom the spectral partition ft, toe may recover each single eigenvalue and its multiplintz.

$$
\begin{aligned}
& \sum_{j \geqslant 0} e^{-t \lambda_{j}}=\sum_{0=\tilde{\lambda}_{0}<\tilde{\lambda}_{1}<\sum_{n=1}^{j * o} \tilde{\lambda}_{2}<\ldots} \mu_{j} e^{-t \tilde{\lambda}_{j}}
\end{aligned}
$$

spectrum wo multiplizises

$$
\lim _{t \rightarrow \infty} e^{t \omega} \sum_{j \geqslant 0} \mu_{j} e^{-t \tilde{d}_{j}}=
$$

$$
=\lim _{t \rightarrow \infty} \sum_{j \geqslant 0} \mu_{j} e^{t\left(\omega-\tilde{\lambda}_{j}\right)}= \begin{cases}0 & \omega<\tilde{\lambda}_{0} \\ \mu_{0} & \omega=\tilde{\lambda}_{0} \\ \infty & \omega>\tilde{\lambda}_{0}\end{cases}
$$

and so on.
Note

$$
\begin{aligned}
\sigma(t)= & \int_{-\infty}^{\infty} e^{-t r^{2}} \cdot r \cdot \tanh (\pi r) d r \mid \\
& \leqslant 2 \int_{0}^{\infty} e^{-r^{2}} r d r \\
& =\left.\frac{e^{-r^{2}}}{-t}\right|_{0} ^{\infty}=\frac{1}{t}
\end{aligned}
$$

Exercise: By integration by pats

$$
\sigma(t) \sim \frac{1}{t}
$$

Duce we have recovered ell eigenvalues (and their mult.) up to $1 / 4$, multiply the TF by $\frac{e^{\epsilon / 4}}{\sigma(t)}-4 \pi:$
$\frac{e^{t / 4}}{\sigma(t)} \sum_{\tilde{\lambda}_{j}>1 / 4} \mu_{j} e^{-t \tilde{\lambda}_{j}}-\operatorname{arca}(M)$
= a function we know
Taking $t \rightarrow \infty$, we recover area (M). Continue with the eigenvalues above $1 / 4$. This shows how to recover the spectrum of the Laplacian from the length spectrum

In the other direction : suppose we knew the spectrum of the Laplacian. To recover the length specturnue,

$$
\frac{e^{-t / 4}}{\sqrt{4 \pi t}} \sum_{l \in \mathcal{L}} \frac{l_{0} e^{-l^{2} / 4 t}}{2 \sinh (l / 2)}
$$

to
recover each distinct length in \mathcal{L} with its multiplicity.

$$
\text { Maim: } \sum_{j \geqslant 0} e^{-t \lambda_{j}} \sim \frac{\operatorname{area}(M)}{4 \pi t}
$$

$$
\text { as } t \rightarrow O^{+}
$$

This says that the spectrum of Laplacian abs determines the area. Once this claim is proved, we are done.

Rewrite length spectrum contrition as

$$
\sum_{l \in \mathcal{L}} \psi(l)=\lim _{l \rightarrow \infty} \sum_{l \leq L} \psi(l)
$$

Abel summation:
if $\psi \in C^{\prime}$,

$$
\begin{aligned}
\sum_{l \leqslant L} \psi(l)=\pi(L) & \psi(L) \\
& -\int_{0}^{L} \pi(u) d \psi(u)
\end{aligned}
$$

where

$$
\pi(L)=\#\{l \in \mathcal{L}: l \leq L\}
$$

as before

Using Abel summation, you can check for yourselves that $\lim _{l \rightarrow \infty} \sum_{l \leq L} \psi(l)<\infty$

$$
\text { if } \psi(L)=O\left(\frac{e^{-L}}{L \cdot \log L}\right)
$$

Exercise:

$$
\psi(L)=O\left(\frac{e^{-L} e^{-c / t}}{L \cdot \log L \cdot \sqrt{t}}\right)
$$

where $c>0$ is a 8 mall constant.

Once we have proven this we have that

$$
\sum_{l \in l} \psi(l) \rightarrow 0 \quad \text { ar } t \rightarrow 0
$$

Hence, lettrog $t \rightarrow 0$ in the STF we are left wi $^{-t}$

$$
\sum_{j \geqslant 0} e^{-\lambda_{j} t}=\frac{\operatorname{area}(M)}{4 \pi}\left(\frac{1}{t}+\sigma_{1}\right)
$$

This pores the claim.
The last pant of this goof shows that we can deduce the $\operatorname{area}(M)$ from the Laplacian spectrum.
Were's law: As $\lambda \rightarrow \infty$

$$
\#\left\{j \geqslant 0: \lambda_{j} \leqslant \lambda\right\} \sim \frac{\operatorname{area}(M)}{4 \pi} \lambda
$$

Hardy-LiAtewood Tanberian the

$$
\begin{aligned}
& \sum_{n \geqslant 0}^{\left(a_{n} \geqslant 0\right)^{0}} a_{n} x^{n} \sim \frac{1}{1-x} \quad|x|<1 \\
& \text { as } x \rightarrow 1^{-}
\end{aligned}
$$

$$
\Rightarrow \sum_{n \leqslant N} a_{n} \sim N \text { as } N \rightarrow \infty \Rightarrow \sum_{\lambda j \leqslant \lambda} \frac{4 \pi}{\operatorname{arca}(n)} \sim \lambda
$$

Proof of Wend's law:
Apply the HL Tanborian the to

$$
\begin{aligned}
& \sum_{j \geqslant 0} e^{-\lambda_{j} t}=\frac{\operatorname{area}(\mu)}{4 \pi}\left(\frac{1}{t}+\theta_{(1)}\right) \\
& x=e^{-t} \rightarrow 1^{-} \longleftrightarrow t \rightarrow 0^{+}
\end{aligned}
$$

Since

$$
\sum_{j \geqslant 10} \frac{4 \pi}{\operatorname{area}(\mu)} e^{-\lambda_{j} t} \sim \frac{1}{1-e^{-t}} \sim \frac{1}{t}
$$

in $\lambda \rightarrow \infty$
\square
Prof: If M is a compact hyperbolic surface,

$$
\operatorname{arca}(M)=4 \bar{a}(g-1)
$$

where g is the genus

Proof
Topological clamfeation of compact orrenteble topological Surfaces: Each such surface is homeomorpluc to

$g=0$

$$
g=1
$$

- Gauss-Bonnet theorem: If M is a compact Rilmaunan surface,

$$
\begin{array}{cc}
\int_{M d A}=2 \pi & X(M) \\
\begin{array}{c}
\text { Gaussion } \\
\text { currative }
\end{array} & \hat{l} \text { Enler } \\
\text { oheracteristic }
\end{array}
$$

$$
\text { cheracteristic } \quad X=V-E+F
$$

Since M is compact hypreabolic

$$
K \equiv-1
$$

and so Gaus1-Bonnet is

$$
\operatorname{area}(M)=-2 \pi X(M)
$$

- The enler cheracteristic is a torological Ancrent

- Take 2 copies of torns
- cur out a chsk \circlearrowleft
- glue alorg the bomoleres

We have seen that: if
M, M^{\prime} are two hyp. pct
surfaces with the same
Laplacian spectrum, they are topologically equivalent.
Question: Are they geometrically equivalent, i-e. isometric?
This is false. First counterexample due to Milnor (1968)
"Can one hear the shape of a dun?"
wave equation: $\left\{\begin{array}{l}\frac{\partial^{2} u}{\partial t^{2}}=-\epsilon \Delta u \\ \left.u\right|_{\partial \Omega}=0\end{array} \quad \begin{array}{ll}(\text { for some constant } & \text { on } \Omega>\mathbb{R}^{2}\end{array}\right.$

